OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19314–19323

Microring-based optical pulse-train generator

Shang Wang, Berkehan Ciftcioglu, and Hui Wu  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19314-19323 (2010)
http://dx.doi.org/10.1364/OE.18.019314


View Full Text Article

Enhanced HTML    Acrobat PDF (1652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a new photonic integrated circuit, namely optical pulse-train generator, which is developed based on the transfer matrix analysis of microrings and utilizes a time-interleaved architecture. This circuit can generate multiple optical pulses sequentially from a single trigger pulse, with the timing and amplitude of each pulse determined by circuit design. Hence it can be applied in optical arbitrary waveform generation and ultrafast electro-optic modulation. A four-tap prototype pulse-train generator design is demonstrated, and the challenge of distributed optical power combining is discussed. The design techniques presented in this paper will find use in other large scale photonic integrated circuit applications.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 25, 2010
Manuscript Accepted: August 6, 2010
Published: August 26, 2010

Citation
Shang Wang, Berkehan Ciftcioglu, and Hui Wu, "Microring-based optical pulse-train generator," Opt. Express 18, 19314-19323 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, "Ultracompact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  3. B. Little, S. Chu, W. Pan, and Y. Kokubun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000). [CrossRef]
  4. Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Express 16, 4309-4315 (2008). [CrossRef] [PubMed]
  5. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn, "Corona: System implications of emerging nanophotonic technology," in ISCA ’08: Proceedings of the 35th International Symposium on Computer Architecture (IEEE Computer Society, Washington, DC, USA, 2008), pp. 153-164.
  6. B. Little, S. Chu, H. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  7. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2007). [CrossRef]
  8. W. C. Black, and D. A. Hodges, "Time interleaved converter arrays," IEEE J. Solid-State Circuits SC-15, 1022-1029 (1980). [CrossRef]
  9. G. C. Valley, "Photonic analog-to-digital converters," Opt. Express 15, 1955-1982 (2007). [CrossRef] [PubMed]
  10. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, "100 Gb/s optical time-division multiplexed networks," J. Lightwave Technol. 20, 2086 (2002). [CrossRef]
  11. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, "Multistage high-order microring-resonator add-drop filters," Opt. Lett. 31, 2571-2573 (2006). [CrossRef] [PubMed]
  12. Y. Zhu, J. Zuegel, J. Marciante, and H. Wu, "Distributed waveform generator: A new circuit technique for ultra wideband pulse generation, filtering and modulation," IEEE J. Solid-State Circuits 44, 808-823 (2009). [CrossRef]
  13. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2007), 2nd ed.
  14. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled resonator optical waveguides," Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]
  15. Y. Vlasov, and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  17. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  18. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752-4757 (2009). [CrossRef] [PubMed]
  19. T. Barwicz, M. Popovic, M. Watts, P. Rakich, E. Ippen, and H. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," J. Lightwave Technol. 24, 2207-2218 (2006). [CrossRef]
  20. F. X. Kärtner, R. Amatya, M. Araghchini, J. Birge, H. Byun, J. Chen, M. Dahlem, N. A. DiLello, F. Gan, C. W. Holzwarth, J. L. Hoyt, E. P. Ippen, A. Khilo, J. Kim, M. Kim, A. Motamedi, J. S. Orcutt, M. Park, M. Perrott, M. A. Popovíc, R. J. Ram, H. I. Smith, G. R. Zhou, S. J. Spector, T. M. Lyszczarz, M. W. Geis, D. M. Lennon, J. U. Yoon, M. E. Grein, and R. T. Schulein, "Photonic analog-to-digital conversion with electronic-photonic integrated circuits," in Silicon Photonics III, J. A. Kubby and G. T. Reed, eds., Proc. SPIE 6898, 689806 (2008). [CrossRef]
  21. M. Izutsu, Y. Nakai, and T. Sueta, "Operation mechanism of the single-mode optical-waveguide Y junction," Opt. Lett. 7, 136-138 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited