OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19339–19352

Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues

Ivan Gusachenko, Gaël Latour, and Marie-Claire Schanne-Klein  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19339-19352 (2010)
http://dx.doi.org/10.1364/OE.18.019339


View Full Text Article

Enhanced HTML    Acrobat PDF (1456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We thoroughly analyze the linear propagation effects that affect polarization-resolved Second Harmonic Generation imaging of thick anisotropic tissues such as collagenous tissues. We develop a theoretical model that fully accounts for birefringence and diattenuation along the excitation propagation, and polarization scrambling upon scattering of the harmonic signal. We obtain an excellent agreement with polarization-resolved SHG images at increasing depth within a rat-tail tendon for both polarizations of the forward SHG signal. Most notably, we observe interference fringes due to birefringence in the SHG depth profile when excited at π/4 angle from the tendon axis. We also measure artifactual decrease of ρ = χxxx /χxyy with depth due to diattenuation of the excitation. We therefore derive a method that proves reliable to determine both ρ and the tendon birefringence and diattenuation.

© 2010 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(190.2620) Nonlinear optics : Harmonic generation and mixing
(180.4315) Microscopy : Nonlinear microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Microscopy

History
Original Manuscript: July 13, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 22, 2010
Published: August 26, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Ivan Gusachenko, Gaël Latour, and Marie-Claire Schanne-Klein, "Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues," Opt. Express 18, 19339-19352 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002). [CrossRef]
  2. W. R. Zipfel, R. Williams, R. Christie, A. Nikitin, B. Hyman, and W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100, 7075–7080 (2003). [CrossRef] [PubMed]
  3. A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech. 70(2), 162–170 (2007). [CrossRef]
  4. M. Strupler, M. Hernest, C. Fligny, J.-L. Martin, P.-L. Tharaux, and M.-C. Schanne-Klein, “Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling,” J. Biomed. Opt. 13, 054041 (2008). [CrossRef]
  5. S. V. Plotnikov, A. Millard, P. Campagnola, and W. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 328–339 (2006). [CrossRef]
  6. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angle of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  7. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009). [CrossRef] [PubMed]
  8. V. Nucciotti, C. Stringari, L. Sacconi, F. Vanzi, L. Fusi, M. Linari, G. Piazzesi, V. Lombardi, and F. S. Pavone, “Probing myosin structural conformation in vivo by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7763–7768 (2010). [CrossRef] [PubMed]
  9. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(04), 1637–1643 (1979). [CrossRef]
  10. P. Stoller, K. Reiser, P. Celliers, and A. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002). [CrossRef] [PubMed]
  11. P. Stoller, P. Celliers, K. Reiser, and A. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Appl. Opt. 42(25), 5209–5219 (2003). [CrossRef] [PubMed]
  12. R. Williams, W. R. Zipfel, and W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88, 1377–1386 (2005). [CrossRef]
  13. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002 (2007). [CrossRef]
  14. X. Han, R. M. Burke, M. L. Zettel, P. Tang, and E. B. Brown, “Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma,” Opt. Express 16(3), 1846–1859 (2008). [CrossRef] [PubMed]
  15. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008). [CrossRef]
  16. D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010). [CrossRef] [PubMed]
  17. O. Nadiarnykh, and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17, 5794–5806 (2009). [CrossRef] [PubMed]
  18. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007). [CrossRef] [PubMed]
  19. R. Boyd, Nonlinear optics (Academic Press, 2003).
  20. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, “Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13(12), 4611–4628 (2005). [CrossRef] [PubMed]
  21. J. Park, N. J. Kemp, H. G. Rylander, and T. E. Milner, “Complex polarization ratio to determine polarization properties of anisotropic tissue using polarization-sensitive optical coherence tomography,” Opt. Express 17(16), 13402–13417 (2009). [CrossRef] [PubMed]
  22. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008). [CrossRef] [PubMed]
  23. P. Schön, M. Behrndt, D. Aït-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010). [CrossRef]
  24. X. D. Wang and L. H. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef]
  25. R. LaComb, O. Nadiarnykh, and S. Carey, S. and P. J. Campagnola, “Quantitative second harmonic generation imaging and modeling of the optical clearing mechanism in striated muscle and tendon,” J. Biomed. Opt. 13, 021109 (2008). [CrossRef]
  26. T. Boulesteix, A. Pena, N. Pagès, G. Godeau, M.-P. Sauviat, E. Beaurepaire, and M. Schanne-Klein, “Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure,” Cytometry 69A(1), 20–26 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited