OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19379–19385

Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19379-19385 (2010)
http://dx.doi.org/10.1364/OE.18.019379


View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast pulsed laser irradiation is demonstrated to be able to produce surface nano-structuring and simultaneous crystallization of amorphous silicon thin film in one step laser processing. After fs laser irradiation on 80 nm-thick a-Si deposited on Corning 1737 glass substrate, the color change from light yellow to dark brown was observed on the sample surface. AFM images show that the surface nano-spike pattern was produced on amorphous-Si:H film by fs laser irradiation. Furthermore, micro-Raman results indicate that the a-Si has been crystallized into nanocrystalline Si. Also, the absorptance of the fs laser treated Si thin film was found to increase in the spectrum range of below bandgap compared to original untreated a-Si. The developed process has a potential application in fabrication of high efficiency Si thin film solar cells.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Laser Microfabrication

History
Original Manuscript: June 3, 2010
Revised Manuscript: July 28, 2010
Manuscript Accepted: August 24, 2010
Published: August 27, 2010

Citation
X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, "Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film," Opt. Express 18, 19379-19385 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977). [CrossRef]
  2. A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005). [CrossRef]
  3. F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006). [CrossRef]
  4. L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006). [CrossRef]
  5. D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006). [CrossRef]
  6. T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003). [CrossRef]
  7. J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004). [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007). [CrossRef]
  9. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002). [CrossRef]
  10. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001). [CrossRef] [PubMed]
  11. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995). [CrossRef] [PubMed]
  12. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997). [CrossRef]
  13. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998). [CrossRef]
  14. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000). [CrossRef]
  15. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995). [CrossRef]
  16. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006). [CrossRef]
  17. A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon Confinement in Nanostructured Materials,” Encyclopedia of Nanoscience and Nanotechnology 8, 499–512, (2004).
  18. C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003). [CrossRef]
  19. E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993). [CrossRef]
  20. A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995). [CrossRef]
  21. R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982). [CrossRef]
  22. E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988). [CrossRef]
  23. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  24. C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983). [CrossRef]
  25. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2(4), 595–599 (1985). [CrossRef]
  26. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998). [CrossRef]
  27. J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited