OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19396–19406

Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range

William DiPippo, Bong Jae Lee, and Keunhan Park  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19396-19406 (2010)
http://dx.doi.org/10.1364/OE.18.019396


View Full Text Article

Enhanced HTML    Acrobat PDF (1106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm2, respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.

© 2010 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.6010) Integrated optics : Sensors
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.1950) Optical devices : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: June 24, 2010
Revised Manuscript: August 7, 2010
Manuscript Accepted: August 10, 2010
Published: August 27, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
William DiPippo, Bong Jae Lee, and Keunhan Park, "Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range," Opt. Express 18, 19396-19406 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  3. C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005). [CrossRef] [PubMed]
  4. E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007). [CrossRef] [PubMed]
  5. K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007). [CrossRef] [PubMed]
  6. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef] [PubMed]
  7. K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000). [CrossRef]
  8. areS. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003). [CrossRef]
  9. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006). [CrossRef] [PubMed]
  10. Y. B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17(5), 3130–3140 (2009). [CrossRef] [PubMed]
  11. J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  12. M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009). [CrossRef] [PubMed]
  13. S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010). [CrossRef]
  14. J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006). [CrossRef] [PubMed]
  15. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A 18(7), 1471–1476 (2001). [CrossRef]
  16. M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005). [CrossRef]
  17. B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).
  18. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  19. M. Moharam and T. Gaylord, “Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  20. W. Lee and F. Degertekin, “Rigorous Coupled-Wave Analysis of Multilayered Grating Structures,” J. Lightwave Technol. 22(10), 2359–2363 (2004). [CrossRef]
  21. K. Byun, S. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005). [CrossRef] [PubMed]
  22. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007). [CrossRef]
  23. B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008). [CrossRef]
  24. B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008). [CrossRef]
  25. J. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE Press, 2002).
  26. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  27. F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004). [CrossRef]
  28. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  29. K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005). [CrossRef]
  30. J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).
  31. T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004). [CrossRef] [PubMed]
  32. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29(12), 1390–1392 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited