OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19429–19437

Bidirectional 60-GHz radio-over-fiber systems with downstream OFDMA and wavelength reuse upstream SC-FDMA

Cheng Zhang, Jun Duan, Juhao Li, Weiwei Hu, Hongbin Li, Hequan Wu, and Zhangyuan Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19429-19437 (2010)
http://dx.doi.org/10.1364/OE.18.019429


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have proposed and experimentally demonstrated a 60-GHz bidirectional radio-over-fiber system with downstream orthogonal frequency division multiplexing address (OFDMA) and wavelength reuse upstream single-carrier frequency division multiple address (SC-FDMA). In the downstream, a 3-dB optical coupler is used for two-carrier injection-locking a distributed feedback (DFB) laser in order to realize the single-sideband modulation. In the upstream, the weakly modulated one of the two downstream carriers is filtered out for wavelength reuse. Transmission of 9.65-Gb/s 16-QAM downstream OFDMA on 60-GHz carrier and 5-Gb/s QPSK upstream SC-FDMA (2.5 Gb/s for each user) are both successfully demonstrated over 53-km standard single mode fiber without chromatic dispersion compensation. The crosstalk between the downstream OFDMA and the upstream SC-FDMA can be neglected.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3520) Lasers and laser optics : Lasers, injection-locked
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 16, 2010
Revised Manuscript: August 23, 2010
Manuscript Accepted: August 24, 2010
Published: August 27, 2010

Citation
Cheng Zhang, Jun Duan, Juhao Li, Weiwei Hu, Hongbin Li, Hequan Wu, and Zhangyuan Chen, "Bidirectional 60-GHz radio-over-fiber systems with downstream OFDMA and wavelength reuse upstream SC-FDMA," Opt. Express 18, 19429-19437 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009). [CrossRef]
  2. H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992). [CrossRef]
  3. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997). [CrossRef]
  4. T. Kuri, K. Kitayama, A. Stohr, and Y. Ogawa, “Fiber-Optic Millimeter-Wave Downlink System using 60 GHz-Band External Modulation,” J. Lightwave Technol. 17(5), 799–806 (1999). [CrossRef]
  5. J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006). [CrossRef]
  6. P.-T. Shih, C.-T. Lin, W.-J. Jiang, Y.-H. Chen, J. J. Chen, and S. Chi, “Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format,” Opt. Express 17(22), 19501–19508 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19501 . [CrossRef] [PubMed]
  7. 3rd Generation Partnership Project, “Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA),” (2006), http://www.3gpp.org/ftp/Specs/html-info/25814.htm .
  8. H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006). [CrossRef]
  9. A. J. Lowery, L. Du, and J. Armstrong, Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP39.
  10. M. Mayrock, and H. Haunstein, “PMD Tolerant Direct-Detection Optical OFDM System,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Tu. 5.2.5, 2007.
  11. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDMA-based 10 Gb/s PON architecture,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Mo 5.4.1, 2007.
  12. J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “Transmission of Microwave-Photonics Generated 16Gbit/s Super Broadband OFDM Signals in Radio-over-Fiber System,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThP2.
  13. C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6056 . [CrossRef] [PubMed]
  14. M. Mohamed, B. Hraimel, X. Zhang, M. N. Sakib, and K. Wu, “Frequency Quadrupler for Millimeter-Wave Multiband OFDM Ultrawideband Wireless Signals and Distribution over Fiber Systems,” J. Opt. Commun. Netw. 1(5), 428–438 (2009). [CrossRef]
  15. L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27(14), 2786–2791 (2009). [CrossRef]
  16. Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, Optical OFDM Signal Generation by Optical Phase Modulator and Its Application in ROF System,” in Proc. 35th European Conf. on Opt. Commun. (ECOC 2009), paper 2.4.4, 2009.
  17. M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave Centralized WDM-OFDM-PON Network Employing Cost-Effective Directly Modulated Laser,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV5.
  18. B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad Convergence of 32QAM-OFDM ROF and WDM-OFDM-PON System Using an Integrated Modulator for Bidirectional Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA26.
  19. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997). [CrossRef]
  20. Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005). [CrossRef]
  21. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995). [CrossRef]
  22. A. Wiberg, B.-E. Olsson, P. O. Hedekvist, and P. A. Andrekson, “Dispersion-Tolerant Millimeter-Wave Photonic Link Using Polarization-Dependent Modulation,” J. Lightwave Technol. 25(10), 2984–2991 (2007). [CrossRef]
  23. C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008). [CrossRef]
  24. Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008). [CrossRef]
  25. H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007). [CrossRef]
  26. M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008). [CrossRef]
  27. A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010). [CrossRef]
  28. C. Hong, M. Li, C. Zhang, C. Peng, W. Hu, A. Xu, and Z. Chen, “Single Mode Modulation using Injection Locked DFB Lasers for Millimetre Wave Radio over Fibre System,” in Proceedings of International Nano-Optoelectronics Workshop, (Academic, Tokyo, Japan, 2008), pp. 129–130.
  29. C. Zhang, M. Li, S. Liu, C. Hong, W. Hu, and Z. Chen, “Single-mode Modulation Using Injection-locked Fabry-Perot Laser in Radio-over-Fiber system,” in Proceedings of Progress in Electromagnetics Research Symposium, (Academic, Beijing, China, 2009), pp. 614–616.
  30. C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010). [CrossRef]
  31. C. Zhang, C. Hong, P. Guo, J. Duan, W. Hu, and Z. Chen, “Single-Sideband Modulation of Vector Signals Based on an Injection-Locked DFB Laser in 60-GHz RoF Systems,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThK5.
  32. Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009). [CrossRef]
  33. X. Zhao and C. J. Chang-Hasnain, “A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008). [CrossRef]
  34. V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited