OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19485–19494

Advanced mask aligner lithography: Fabrication of periodic patterns using pinhole array mask and Talbot effect

Lorenz Stuerzebecher, Torsten Harzendorf, Uwe Vogler, Uwe D. Zeitner, and Reinhard Voelkel  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19485-19494 (2010)
http://dx.doi.org/10.1364/OE.18.019485


View Full Text Article

Enhanced HTML    Acrobat PDF (1522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Talbot effect is utilized for micro-fabrication of periodic microstructures via proximity lithography in a mask aligner. A novel illumination system, referred to as MO Exposure Optics, allows to control the effective source shape and accordingly the angular spectrum of the illumination light. Pinhole array photomasks are employed to generate periodic high-resolution diffraction patterns by means of self-imaging. They create a demagnified image of the effective source geometry in their diffraction pattern which is printed to photoresist. The proposed method comprises high flexibility and sub-micron resolution at large proximity gaps. Various periodic structures have been generated and are presented.

© 2010 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 22, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 20, 2010
Published: August 30, 2010

Citation
Lorenz Stuerzebecher, Torsten Harzendorf, Uwe Vogler, Uwe D. Zeitner, and Reinhard Voelkel, "Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and Talbot effect," Opt. Express 18, 19485-19494 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19485


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Talbot, “Facts Relating to Optical Science, No. IV,” Philos. Mag. 9, 401–407 (1836).
  2. A. Kolcodziejczyk, “Lensless multiple image formation by using a sampling filter,” Opt. Commun. 59(2), 97–102 (1986). [CrossRef]
  3. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63(4), 416–419 (1973). [CrossRef]
  4. A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004). [CrossRef]
  5. Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998). [CrossRef]
  6. T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005). [CrossRef]
  7. R. Voelkel and ., “Advanced mask aligner lithography: New illumination system,” Opt. Express (to be published). [PubMed]
  8. R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” EP 09169158.4, (2009).
  9. T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, (2010).
  10. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel Images. I. Plane Periodic Objects in Monochromatic Light,” J. Opt. Soc. Am. 55(4), 373–381 (1965). [CrossRef]
  11. C. Mack, Fundamental principles of optical lithography (John Wiley & Sons, 2007), Chap. 1.
  12. W. Wang, and H. Zhu, “Near-field diffraction of a hexagonal array at fractional Talbot planes,” Proc. SPIE 7506, (2009).
  13. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the talbot effect,” Appl. Opt. 29(29), 4337–4340 (1990). [CrossRef] [PubMed]
  14. V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994). [CrossRef]
  15. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15(5), 288–290 (1990). [CrossRef] [PubMed]
  16. H. Hamam, “Design of Talbot array illuminators,” Opt. Commun. 131(4-6), 359–370 (1996). [CrossRef]
  17. A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001). [CrossRef]
  18. E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994). [CrossRef]
  19. B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997). [CrossRef]
  20. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited