OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19495–19503

Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence

Lin Cai, Guangyuan Li, Feng Xiao, Zhonghua Wang, and Anshi Xu  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19495-19503 (2010)
http://dx.doi.org/10.1364/OE.18.019495


View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metallic nano-slit surrounded with asymmetric grooves is proposed as the plasmonic concentrator for oblique incident light. A theoretical model based on the surface plasmon polariton (SPP) coupled-mode method is derived for the extraordinary optical transmission (EOT) through such a structure under oblique incidence. The model is quantitatively validated with the finite element method. With the model, the physical insight of the EOT is then interpreted, i.e., the major contributions to the transmission include the vertical Fabry-Perot resonance of the slit, and the interference among slit modes excited by the incident light, by SPPs generated from groove arrays and their first-order reflections. This is quite different from the EOT through a nano-slit surrounded with symmetric grooves under normal incidence.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 29, 2010
Revised Manuscript: August 19, 2010
Manuscript Accepted: August 19, 2010
Published: August 30, 2010

Citation
Lin Cai, Guangyuan Li, Feng Xiao, Zhonghua Wang, and Anshi Xu, "Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence," Opt. Express 18, 19495-19503 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19495


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998). [CrossRef]
  2. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006). [CrossRef]
  3. R. D. Bhat, N. C. Panoiu, S. R. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express 16,4588–4596 (2008). [CrossRef] [PubMed]
  4. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009). [CrossRef]
  5. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001). [CrossRef]
  6. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003). [CrossRef] [PubMed]
  7. A. Degiron and T.W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12,3694–3700 (2004). [CrossRef] [PubMed]
  8. B. Ung and Y. Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express 15,1182–1190 (2007). [CrossRef] [PubMed]
  9. O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007). [CrossRef] [PubMed]
  10. Y. X. Cui and S. L. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17,13995–14000 (2009). [CrossRef] [PubMed]
  11. L. Cai, G. Li, Z. Wang, and A. Xu, “Interference and horizontal Fabry-Perot resonance on extraordinary transmission through a metallic nano-slit surrounded with grooves,” Opt. Lett. 35,127–129 (2010). [CrossRef] [PubMed]
  12. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009). [CrossRef]
  13. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007). [CrossRef] [PubMed]
  14. D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15,2585–2591 (2007). [CrossRef] [PubMed]
  15. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007). [CrossRef]
  16. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010). [CrossRef]
  17. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18,2865–2875 (2001). [CrossRef]
  18. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18,10487–10499 (2010). [CrossRef] [PubMed]
  19. G. Li and A. Xu, “Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc SPIE 7135,71350T (2008). [CrossRef]
  20. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23,1608–1615 (2006). [CrossRef]
  21. H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14,11823–11832 (2006). [CrossRef] [PubMed]
  24. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001). [CrossRef]
  25. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited