OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19510–19521

Anomalous optical absorption in metallic gratings with subwavelength slits

Ruey-Lin Chern, Yu-Tang Chen, and Hoang-Yan Lin  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19510-19521 (2010)
http://dx.doi.org/10.1364/OE.18.019510


View Full Text Article

Enhanced HTML    Acrobat PDF (6686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption in metallic gratings with subwavelength slits is theoretically investigated. Anomalous optical absorption occurs over a wide range of incident angles for TM and TE polarizations with different geometric parameters. In particular, a nearly perfect absorbance up to 99.5% with a significant bandwidth is attained for TM polarization with compound slits. Enhanced absorption is associated with extreme concentration of fields inside the structure. The respective field pattern depicts a special feature of surface plasmons excited on single interface only, which are identified as semibonding modes. The anomalous absorption is also achieved for TE polarization, when the compound grating is reduced to a simple grating. For this polarization, the anomalous absorption is attributed to the occurrence of trapped modes, with a slightly smaller absorbance (98.4%).

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.1030) Spectroscopy : Absorption

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 2, 2010
Revised Manuscript: August 8, 2010
Manuscript Accepted: August 20, 2010
Published: August 30, 2010

Citation
Ruey-Lin Chern, Yu-Tang Chen, and Hoang-Yan Lin, "Anomalous optical absorption in metallic gratings with subwavelength slits," Opt. Express 18, 19510-19521 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  4. Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  5. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005). [CrossRef]
  6. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  7. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009). [CrossRef]
  8. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  9. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008). [CrossRef]
  10. Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009). [CrossRef] [PubMed]
  11. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009). [CrossRef] [PubMed]
  12. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005). [CrossRef]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  14. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008). [CrossRef]
  15. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  16. L. Dai, and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009). [CrossRef] [PubMed]
  17. D. K. Gramotnev, “Anomalous absorption of TM electromagnetic waves by an ultrathin layer: optical analog of liquid friction,” Opt. Lett. 23, 91–93 (1998). [CrossRef]
  18. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef] [PubMed]
  19. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009). [CrossRef]
  20. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009). [CrossRef]
  21. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  22. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]
  23. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009). [CrossRef]
  24. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  25. E. D. Palik, and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  26. R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010). [CrossRef]
  27. Y. T. Chen, R. L. Chern, and H. Y. Lin, “Multiple Fano resonances in metallic arrays of asymmetric dual stripes,” Appl. Opt. 49, 2819–2826 (2010). [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  29. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006). [CrossRef]
  30. N. W. Alcock, “Secondary bonding to nonmetallic elements,” Adv. Inorg. Chem. 15, 1–58 (1972). [CrossRef]
  31. N. W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic chemistry (Ellis Horwood, 1990).
  32. A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005). [CrossRef]
  33. E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
  34. D. Crouse, and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [CrossRef] [PubMed]
  35. Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited