OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19541–19557

Toward ultimate miniaturization of high Q silicon traveling-wave microresonators

Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19541-19557 (2010)
http://dx.doi.org/10.1364/OE.18.019541


View Full Text Article

Enhanced HTML    Acrobat PDF (1947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High Q traveling-wave resonators (TWR)s are one of the key building block components for VLSI Photonics and photonic integrated circuits (PIC). However, dense VLSI integration requires small footprint resonators. While photonic crystal resonators have shown the record in simultaneous high Q (~105-106) and very small mode volumes; the structural simplicity of TWRs has motivated many ongoing researches on miniaturization of these resonators with maintaining Q in the same range. In this paper, we investigate the scaling issues of silicon traveling-wave microresonators down to ultimate miniaturization levels in SOI platforms. Two main constraints that are considered during this down scaling are: 1) Preservation of the intrinsic Q of the resonator at high values, and 2) Compatibility of resonator with passive (active) integration by preserving the SiO2 BOX layer (plus a thin Si slab layer for P-N junction fabrication). Microdisk and microdonut (an intermediate design between disk and ring shape) are considered for high Q, miniaturization, and single-mode operation over a wide wavelength range (as high as the free-spectral range). Theoretical and experimental results for miniaturized resonators are demonstrated and Q's as high as ~105 for resonators as small as 1.5 μm radius are achieved.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: June 14, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: August 24, 2010
Published: August 30, 2010

Citation
Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi, "Toward ultimate miniaturization of high Q silicon traveling-wave microresonators," Opt. Express 18, 19541-19557 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19541


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lipson, “Silicon photonics: An exercise in self control,” Nat. Photonics 1(1), 18–19 (2007). [CrossRef]
  2. C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  4. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009). [CrossRef]
  5. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006). [CrossRef]
  6. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  7. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  8. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, Ultra-low power silicon microdisk modulators and switches,” IEEE Conf. Group IV Photonics, Sorento, Italy, 2008.
  9. S. Manipatruni, L. Chen, K. Preston, and M. Lipson, “Ultra-low power electro-optic modulator on silicon: towards direct logic driven silicon modulators,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.
  10. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Ultimate miniaturization of single and coupled resonator filters in silicon photonics,” Conference on Laser and Electro-optics (CLEO), Baltimore, MD, 2009.
  11. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009). [CrossRef]
  12. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009). [CrossRef]
  13. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006). [CrossRef] [PubMed]
  14. M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” IEEE LEOS Conference, Turkey, 2009.
  15. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  16. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  17. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  18. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007). [CrossRef] [PubMed]
  19. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007). [CrossRef] [PubMed]
  20. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006). [CrossRef] [PubMed]
  21. M. Soltani, Novel integrated silicon nanophotonic structures using ultra-high Q resonator, Ph.D. dissertation, Georgia Institute of Technology, 2009.
  22. F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997). [CrossRef]
  23. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010). [CrossRef]
  24. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  25. M. Borselli, High-Q microresonators as lasing elements for silicon photonics, Ph.D dissertation, California Institute of Technology, 2006.
  26. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited