OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19558–19565

Absorption profile modulation by means of 1D digital plasmonic gratings

P. Zilio, D. Sammito, G. Zacco, and F. Romanato  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19558-19565 (2010)
http://dx.doi.org/10.1364/OE.18.019558


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical simulations of 1D digital plasmonic gratings on a Silicon substrate are performed by means of the Finite Elements Method and a modal analysis. The different mechanisms of transmission of the light are elucidated. The absorption profile in Silicon can be modulated and controlled changing the geometry. Configuration maps allow to determine the different optical regimes. Surface Plasmon Polaritons and cavity-mode resonances are shown to be effectively exploitable to enhance NIR-light absorption in different shallower regions of the underlying Silicon.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 12, 2010
Revised Manuscript: May 26, 2010
Manuscript Accepted: May 27, 2010
Published: August 31, 2010

Citation
P. Zilio, D. Sammito, G. Zacco, and F. Romanato, "Absorption profile modulation by means of 1D digital plasmonic gratings," Opt. Express 18, 19558-19565 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Rather, Surface Plasmons (Springer-Verlag, 1988).
  2. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]
  3. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  5. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]
  7. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006). [CrossRef]
  8. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009). [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  10. L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, 1984), pp. 272–6.
  11. B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008). [CrossRef]
  12. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  13. F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002). [CrossRef]
  14. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365–2373 (2005). [CrossRef]
  15. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  16. F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010). [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  18. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008). [CrossRef] [PubMed]
  19. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009). [CrossRef]
  20. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  21. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907). [CrossRef]
  22. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006). [CrossRef] [PubMed]
  23. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  24. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited