OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19574–19580

Excitation wavelength dependence of phase matched terahertz emission from a GaAs slab

F. Peter, S. Winnerl, H. Schneider, and M. Helm  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19574-19580 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on phase matched THz emission from GaAs using the anomalous dispersion introduced by optical phonon absorption at the reststrahlenband in GaAs. For this system tunability of the emitted THz frequencies by changing the near infrared excitation wavelength is predicted. We investigate this phenomenon for an oversized double metallized GaAs waveguide. A shift in the THz spectra is observed when the near-infrared wavelength is varied. Enhanced emission is found when phase matching is achieved at 1.4 µm.

© 2010 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3090) Physical optics : Infrared, far

ToC Category:
Nonlinear Optics

Original Manuscript: July 6, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: August 26, 2010
Published: August 31, 2010

F. Peter, S. Winnerl, H. Schneider, and M. Helm, "Excitation wavelength dependence of phase matched terahertz emission from a GaAs slab," Opt. Express 18, 19574-19580 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNb03,” Appl. Phys. Lett. 19(9), 320–323 (1971). [CrossRef]
  2. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984). [CrossRef]
  3. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 mum at an 88-MHz repetition rate,” Opt. Lett. 23(11), 861–863 (1998). [CrossRef]
  4. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobat,” Appl. Phys. Lett. 76(18), 2505–2507 (2000). [CrossRef]
  5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006). [CrossRef]
  6. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon, Rev. 2(1-2), 11–25 (2008). [CrossRef]
  7. Y. J. Ding and I. B. Zotova, “Coherent and tunable terahertz oscillators, generators and amplifiers,” J. Nonlinear Opt. Phys. Mater. 11(1), 75–97 (2002). [CrossRef]
  8. V. Berger and C. Sirtori, “Nonlinear phase matching in THz semiconductor waveguides,” Semicond. Sci. Technol. 19(8), 964–970 (2004). [CrossRef]
  9. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), 81–123 (1982). [CrossRef]
  10. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004). [CrossRef]
  11. A. Marandi, T. E. Darcie, and P. P. M. So, “Design of a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs,” Opt. Express 16(14), 10427–10433 (2008). [CrossRef] [PubMed]
  12. K. L. Vodopyanov and Y. H. Avetisyan, “Optical terahertz wave generation in a planar GaAs waveguide,” Opt. Lett. 33(20), 2314–2316 (2008). [CrossRef] [PubMed]
  13. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15(25), 16308–16315 (2007). [CrossRef] [PubMed]
  14. Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, “Thickness dependence of the terahertz response in <110>-oriented GaAs crystals for electro-optic sampling at 1.55 µm,” Opt. Express 18(15), 15956–15963 (2010). [CrossRef] [PubMed]
  15. Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996). [CrossRef]
  16. J. T. Boyd, “Theory of parametric oscillation phase matched in GaAs thin-film waveguides,” IEEE J. Quantum Electron. 8(10), 788–796 (1972). [CrossRef]
  17. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Kohler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008). [CrossRef]
  18. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  19. F. Peter, S. Winnerl, H. Schneider, M. Helm, and K. Köhler, “Terahertz emission from a large-area GaInAsN emitter,” Appl. Phys. Lett. 93(10), 101102 (2008). [CrossRef]
  20. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005). [CrossRef]
  21. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007). [CrossRef]
  22. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009). [CrossRef]
  23. These simulations were realized by using the commercial finite element solver Comsol.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited