OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19581–19591

Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum

Jingqing Huang, Se-Heon Kim, and Axel Scherer  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19581-19591 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze metal-clad disk cavities designed for nanolasers in the visible red spectrum with subwavelength device size and mode volume. Metal cladding suppresses radiation loss and supports low order modes with room temperature Q of 200 to 300. Non-degenerate single-mode operation with enhanced spontaneous emission coupling factor β is expected with the TE011 mode that has a 0.46(λ0/n)3 mode volume and Q = 210 in a device of size 0.12λ30. Threshold gain calculations show that room temperature lasing is possible using multiple GaInP/AlGaInP quantum wells as the gain medium. Placing a planar metal reflector under the cavity can enhance radiation and extraction efficiencies or increase the Q, without incurring additional metallic absorption loss. We show that the far-field radiation characteristics are strongly affected by the devices’ immediate surroundings, such as changes in metal cladding thickness, even as the resonant mode profile, frequency, and Q remain the same. When the metal cladding is 1 µm thick, light radiates upward with a distinct intensity maximum at 45°; when the cladding is 100 nm thick, the emitted light spreads in a near-horizontal direction.

© 2010 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.7300) Lasers and laser optics : Visible lasers
(230.5750) Optical devices : Resonators
(250.7270) Optoelectronics : Vertical emitting lasers
(260.3910) Physical optics : Metal optics
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 23, 2010
Revised Manuscript: August 21, 2010
Manuscript Accepted: August 24, 2010
Published: August 31, 2010

Jingqing Huang, Se-Heon Kim, and Axel Scherer, "Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum," Opt. Express 18, 19581-19591 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166-1185 (2009) [CrossRef]
  2. M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003) [CrossRef]
  3. S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seessal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008) [CrossRef] [PubMed]
  4. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008) [CrossRef] [PubMed]
  5. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946)
  6. J.-M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999) [CrossRef]
  7. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007) [CrossRef] [PubMed]
  8. T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004) [CrossRef]
  9. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006) [CrossRef]
  10. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008) [CrossRef] [PubMed]
  11. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009) [CrossRef]
  12. K. Yu, A. Lakhani, and M. C. Wu, "Subwavelength metal-optic semiconductor nanopatch lasers," Opt. Express 18, 8790-8799 (2010) [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003) [CrossRef] [PubMed]
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005) [CrossRef]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)
  16. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972) [CrossRef]
  17. D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids I, E. D. Palik, eds., (Academic, San Diego, Calif., 1998), pp. 275-367.
  18. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006) [CrossRef]
  19. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006) [CrossRef]
  20. A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007) [CrossRef]
  21. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007) [CrossRef]
  22. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007) [CrossRef] [PubMed]
  23. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010) [CrossRef]
  24. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982) [CrossRef]
  25. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003) [CrossRef]
  26. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006) [CrossRef] [PubMed]
  27. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). Erratum, ibid. 109, 4128 (1998). [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005)
  29. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997) [CrossRef]
  30. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007) [CrossRef]
  31. C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007) [CrossRef] [PubMed]
  32. S.-W. Chang and S. L. Chuang, "Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media," Opt. Lett. 34, 91-93 (2009) [CrossRef]
  33. S.-W. Chang and S. L. Chuang, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron. 45, 1014-1023 (2009) [CrossRef]
  34. S.-W. Chang, T.-R. Lin, and S. L. Chuang, "Theory of plasmonic fabry-perot nanolasers," Opt. Express 18, 15039-15053 (2010) [CrossRef] [PubMed]
  35. H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994) [CrossRef]
  36. W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997) [CrossRef]
  37. G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994) [CrossRef]
  38. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009) [CrossRef] [PubMed]
  39. E. F. Schubert. Y.-H.Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992) [CrossRef]
  40. H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998) [CrossRef]
  41. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006) [CrossRef]
  42. R. A. Matula, "Electrical resistivity of copper, gold, palladium, and silver," J. Phys. Chem. Ref. Data 8, 1147(1979) [CrossRef]
  43. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited