OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19626–19644

Scattering and cloaking of binary hyper-particles in metamaterials

A. Alexopoulos and K. S. B. Yau  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19626-19644 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2033 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive the d-dimensional scattering cross section for homogeneous and composite hyper-particles inside a metamaterial. The polarizability of the hyper-particles is expressed in multi-dimensional form and is used in order to examine various scattering characteristics. We introduce scattering bounds that display interesting results when d → ∞ and in particular consider the special limit of hyper-particle cloaking in some detail. We demonstrate cloaking via resonance for homogeneous particles and show that composite hyper-particles can be used in order to obtain electromagnetic cloaking with either negative or all positive constitutive parameters respectively. Our approach not only considers cloaking of particles of integer dimension but also particles with non-integer dimension such as fractals. Theoretical results are compared to full-wave numerical simulations for two interacting hyper-particles in a medium.

© 2010 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(290.5839) Scattering : Scattering, invisibility

ToC Category:

Original Manuscript: August 25, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: August 26, 2010
Published: August 31, 2010

Aris Alexopoulos and Bobby Yau, "Scattering and cloaking of binary hyper-particles in metamaterials," Opt. Express 18, 19626-19644 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, N. Nasser, and S. C. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. E 84, 4184 (2000).
  4. R. W. Ziolkowski, and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antenn. Propag. 51, 2626-2640 (2003). [CrossRef]
  5. N. Engheta, and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech. 53, 1535-1556 (2005). [CrossRef]
  6. A. Alù, and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  7. A. Alù, and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15(6), 3318-3332 (2007). [CrossRef] [PubMed]
  8. A. Alù, and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Opt. Express 15(12), 7578-7590 (2007). [CrossRef] [PubMed]
  9. A. Alù, and N. Engheta, "Multifrequency optical cloaking with layered plasmonic shells," Phys. Rev. Lett. 100, 113901 (2008). [CrossRef] [PubMed]
  10. A. Sihvola, "Peculiarities in the dielectric response of negative-permittivity scatters," Prog. Electromagn. Res. 66, 191-198 (2006). [CrossRef]
  11. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (New York, Wiley, 1983).
  12. X. Zhou and G. Hu, "Design for electromagnetic wave transparency with metamaterials," Phys. Rev. E 74, 026607 (2006). [CrossRef]
  13. J. S. McGuirk, and P. J. Collins, "Controlling the transmitted field into a cylindrical cloak’s hidden region," Opt. Express 16, 17560-17572 (2008). [CrossRef] [PubMed]
  14. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, "Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials," Opt. Express 16, 9942-9950 (2008). [CrossRef] [PubMed]
  15. H. R. Stuart, and R. W. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antenn. Propag. 54(6), 1644-1653 (2006). [CrossRef]
  16. J. Pendry, A. J. Holden, D. D. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  17. A. Alexopoulos, "Effective response and scattering cross section of spherical inclusions in a medium," Phys. Lett. A 373(35), 3190-3196 (2009). [CrossRef]
  18. A. Alexopoulos, "Effective-medium theory of surfaces and metasurfaces containing two-dimensional binary inclusions," Phys. Rev. E 81, 046607 (2010). [CrossRef]
  19. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  20. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 312, 1780-1782 (2006). [PubMed]
  21. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  22. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  23. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007). [CrossRef] [PubMed]
  24. A. V. Kildishev, and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett. 33, 43 (2008). [CrossRef]
  25. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  26. U. Leonhardt, "Notes on conformal invisibility devices," N. J. Phys. 8, 118 (2006). [CrossRef]
  27. U. Leonhardt, "General relativity in electrical engineering," N. J. Phys. 8, 247 (2006). [CrossRef]
  28. A. Alù, and N. Engheta, "Robustness in design and background variations in metamaterial/plasmonic cloaking," Radio Sci. 43, RS4S01 (2008). [CrossRef]
  29. V. G. Kravets, F. Schedin, S. Taylor, D. Viita, and A. N. Grigorenko, "Plasmonic resonances in optomagnetic metamaterials based on double dot arrays," Opt. Express 18(10), 9780 (2010). [CrossRef] [PubMed]
  30. G. W. Milton, and N. A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. Lond. A Math. Phys. Sci. 462, 3027-3059 (2006). [CrossRef]
  31. M. G. Silveirinha, A. Alù, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E 75, 036603 (2007). [CrossRef]
  32. W. Cai, U. K. Chettiar, A. V. Kildishev, G. W. Milton, and V. M. Shalaev, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  33. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  34. W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, "A near perfect-invisibility cloak constructed with homogeneous materials," Opt. Express 17, 23410-23416 (2009). [CrossRef]
  35. J. Gleick, Chaos: Making a New Science, (New York: Penguin Books, 1988).
  36. J. W. Harris, and H. Stocker, "Koch’s Curve" and "Koch’s Snowflake," 4.11.5-4.11.6 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, pp. 114-115, (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited