OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19645–19655

Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing

Alipasha Vaziri and Charles V. Shank  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19645-19655 (2010)
http://dx.doi.org/10.1364/OE.18.019645


View Full Text Article

Enhanced HTML    Acrobat PDF (2562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The need for optical sectioning in bio-imaging has amongst others led to the development of the two-photon scanning microscopy. However, this comes with some intrinsic fundamental limitations in the temporal domain as the focused spot has to be scanned mechanically in the sample plane. Hence for a large number of biological applications where imaging speed is a limiting factor, it would be significantly advantageous to generate widefield excitations with an optical sectioning comparable to the two-photon scanning microscopy. Recently by using the technique of temporal focusing it was shown that high axial resolution widefield excitation can be generated in picosecond time scales without any mechanical moving parts. However the achievable axial resolution is still well above that of a two-photon scanning microscope. Here we demonstrate a new ultrafast widefield two-photon imaging technique termed Multifocal Temporal Focusing (MUTEF) which relies on the generation of a set of diffraction limited beams produced by an Echelle grating that scan across a second tilted diffraction grating in picosecond time scale, generating a widefield excitation area with an axial resolution comparable to a two-photon scanning microscope. Using this method we have shown widefield two-photon imaging on fixed biological samples with an axial sectioning with a FWHM of ~0.85 μm.

© 2010 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: June 22, 2010
Revised Manuscript: August 9, 2010
Manuscript Accepted: August 19, 2010
Published: August 31, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Alipasha Vaziri and Charles V. Shank, "Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing," Opt. Express 18, 19645-19655 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281(7), 1796–1805 (2008). [CrossRef] [PubMed]
  3. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998). [CrossRef]
  4. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005). [CrossRef] [PubMed]
  5. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30(13), 1686–1688 (2005). [CrossRef] [PubMed]
  6. G. H. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005). [CrossRef] [PubMed]
  7. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20221–20226 (2008). [CrossRef] [PubMed]
  8. B. K. Andrasfalvy, B. V. Zemelman, J. Tang, and A. Vaziri, “Two-photon single-cell optogenetic control of neuronal activity by sculpted light,” Proc. Natl. Acad. Sci. U.S.A. 107(26), 11981–11986 (2010). [CrossRef] [PubMed]
  9. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef] [PubMed]
  10. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009). [CrossRef] [PubMed]
  11. R. M. Williams, D. W. Piston, and W. W. Webb, “Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry,” FASEB J. 8(11), 804–813 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited