OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19693–19699

Superluminal propagation of pulsed pseudo-thermal light in atomic vapor

In-Ho Bae, Young-Wook Cho, Hee Jung Lee, Yoon-Ho Kim, and Han Seb Moon  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19693-19699 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental demonstration of slow and superluminal propagation of pseudo-thermal (chaotic) light in the Λ-type system of the 5S1/2–5P1/2 transition of 87Rb atom. The slowed propagation of pulsed pseudo-thermal light was demonstrated in an electromagnetically-induced transparency medium while the superluminal propagation was demonstrated with the enhanced absorption scheme where the coupling field takes the form of a standing wave. We have also demonstrated that the photon number statistics of the pseudo-thermal light is preserved for both the subluminal and superluminal cases.

© 2010 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics

ToC Category:
Slow and Fast Light

Original Manuscript: May 25, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 13, 2010
Published: September 1, 2010

In-Ho Bae, Young-Wook Cho, Hee Jung Lee, Yoon-Ho Kim, and Han Seb Moon, "Superluminal propagation of pulsed pseudo-thermal light in atomic vapor," Opt. Express 18, 19693-19699 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999). [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  3. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003). [CrossRef]
  4. H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004). [CrossRef]
  5. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001). [CrossRef] [PubMed]
  6. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  7. Y.-W. Cho, and Y.-H. Kim, "Storage and Retrieval of Thermal Light in Warm Atomic Vapor," eprint arXiv:0910.0074 (2009).
  8. S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982). [CrossRef]
  9. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993). [CrossRef] [PubMed]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  11. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003). [CrossRef] [PubMed]
  12. R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007). [CrossRef]
  13. I. H. Bae, H. S. Moon, M. K. Kim, L. Lim, and J. B. Kim, "Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell," Opt. Express 18, 1389-1397 (2010). [CrossRef] [PubMed]
  14. H. S. Moon, S. E. Park, Y.-H. Park, L. Lim, and J. B. Kim, "Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers," J. Opt. Soc. Am. B 23, 2393-2397 (2006). [CrossRef]
  15. F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912-916 (1965). [CrossRef]
  16. R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956). [CrossRef]
  17. M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995). [CrossRef]
  18. L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. Lond. 74, 233 (1959). [CrossRef]
  19. R. Loudon, "The Quantum Theory of Light," The Quantum Theory of Light (Oxford University Press) (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited