OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19792–19823

Field-quadrature and photon-number correlations produced by parametric processes

C. J. McKinstrie, M. Karlsson, and Z. Tong  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19792-19823 (2010)
http://dx.doi.org/10.1364/OE.18.019792


View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a previous paper [Opt. Express 13, 4986 (2005)], formulas were derived for the field-quadrature and photon-number variances produced by multiple-mode parametric processes. In this paper, formulas are derived for the quadrature and number correlations. The number formulas are used to analyze the properties of basic devices, such as two-mode amplifiers, attenuators and frequency convertors, and composite systems made from these devices, such as cascaded parametric amplifiers and communication links. Amplifiers generate idlers that are correlated with the amplified signals, or correlate pre-existing pairs of modes, whereas attenuators decorrelate pre-existing modes. Both types of device modify the signal-to-noise ratios (SNRs) of the modes on which they act. Amplifiers decrease or increase the mode SNRs, depending on whether they are operated in phase-insensitive (PI) or phase-sensitive (PS) manners, respectively, whereas attenuators always decrease these SNRs. Two-mode PS links are sequences of transmission fibers (attenuators) followed by two-mode PS amplifiers. Not only do these PS links have noise figures that are 6-dB lower than those of the corresponding PI links, they also produce idlers that are (almost) completely correlated with the signals. By detecting the signals and idlers, one can eliminate the effects of electronic noise in the detectors.

© 2010 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

History
Original Manuscript: June 9, 2010
Revised Manuscript: August 26, 2010
Manuscript Accepted: August 28, 2010
Published: September 1, 2010

Citation
C. J. McKinstrie, M. Karlsson, and Z. Tong, "Field-quadrature and photon-number correlations produced by parametric processes," Opt. Express 18, 19792-19823 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hansryd, P. A. Andrekson, M. Westland, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  2. S. Radic, and C. J. McKinstrie, “Optical amplification and signal processing in highly nonlinear optical fiber,” IEICE Trans. Electron,” E 88-C, 859–869 (2005). [CrossRef]
  3. P. A. Andrekson, and M. Westlund, “Nonlinear optical fiber based all-optical waveform sampling,” Laser Photon. Rev. 1, 231–248 (2007). [CrossRef]
  4. S. Radic, “Parametric amplification and processing in optical fibers,” Laser Photon. Rev. 2, 489–513 (2008). [CrossRef]
  5. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12, 5037–5066 (2004). [CrossRef] [PubMed]
  6. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express 13, 4986–5012 (2005). [CrossRef] [PubMed]
  7. R. Loudon, and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987). [CrossRef]
  8. S. M. Barnett, and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).
  9. N. Christensen, R. Leonhardt, and J. D. Harvey, “Noise characteristics of cross-phase modulation instability light,” Opt. Commun. 101, 205–212 (1993). [CrossRef]
  10. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001). [CrossRef]
  11. R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, “In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier,” IEEE Photon. Technol. Lett. 17, 1845–1847 (2005). [CrossRef]
  12. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, and P. Kumar, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13, 10483–10493 (2005). [CrossRef] [PubMed]
  13. C. Lundström, J. Kakande, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani and D. J. Richardson, “Experimental comparison of gain and saturation characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode,” ECOC 2009, paper 1.1.1.
  14. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010). [CrossRef] [PubMed]
  15. R. Loudon, “Theory of noise accumulation in linear optical-amplifier chains,” J. Quantum Electron. 21, 766–773 (1985). [CrossRef]
  16. R. E. Slusher, and B. Yurke, “Squeezed light for coherent communications,” J. Lightwave Technol. 8, 466–477 (1990). [CrossRef]
  17. M. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express 13, 7563–7571 (2005). [CrossRef] [PubMed]
  18. C. J. McKinstrie, S. Radic, R. M. Jopson, and A. R. Chraplyvy, “Quantum noise limits on optical monitoring with parametric devices,” Opt. Commun. 259, 309–320 (2006). [CrossRef]
  19. J. M. Manley, and H. E. Rowe, “Some general properties of nonlinear elements–Part I. General energy relations,” Proc. IRE 44, 904–913 (1956). [CrossRef]
  20. M. T. Weiss, “Quantum derivation of energy relations analogous to those for nonlinear reactances,” Proc. IRE 45, 1012–1013 (1957).
  21. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005). [CrossRef] [PubMed]
  22. M. G. Raymer, S. J. van Enk, C. J. McKinstrie, and H. J. McGuinness, “Interference of two photons of different color,” Opt. Commun. 283, 747–752 (2010). [CrossRef]
  23. Z. Tong, A. Bogris, C. Lundström, C. J. McKinstrie, M. Vasilyev, M. Karlsson, and P. A. Andrekson, “Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier,” Opt. Express 18, 14820–14835 (2010). [CrossRef] [PubMed]
  24. Z. Tong, C. J. McKinstrie, C. Lundström, M. Karlsson, and P. A. Andrekson, “Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensative amplifiers,” Opt. Express 18, 15426–15439 (2010). [CrossRef] [PubMed]
  25. L. A. Krivitsky, U. L. Andersen, R. Dong, A. Huck, C. Wittmann, and G. Leuchs, “Electronic noise-free measurements of squeezed light,” Opt. Lett. 33, 2395–2397 (2008). [CrossRef] [PubMed]
  26. C. J. McKinstrie, S. Radic, M. G. Raymer, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in fibers,” Opt. Commun. 257, 146–163 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited