OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19831–19843

Analysis and applications of 3D rectangular metallic waveguides

Mohamed A. Swillam and Amr S. Helmy  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19831-19843 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic modes in rectangular metallic waveguides are analyzed in depth and are demonstrated to possess attractive properties for different applications. Their dispersion characteristics allow for wide range of applications including slow and fast light, metamaterial, low loss energy transmission, and opportunities for sensing devices. The sensitivity of this waveguide configuration is higher than its counterparts and can reach four times the sensitivity of the MIM structures. The characteristics of the TM10 mode are demonstrated. Its applications for sensing, low propagation loss with relaxed practical dimension are also highlighted. A high effective index of more than 30 is also obtainable for the TE01 mode for slow light operation. A non resonant negative index material with isotropic polarization in the visible region is also proposed using this waveguide structure.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 15, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 16, 2010
Published: September 2, 2010

Mohamed A. Swillam and Amr S. Helmy, "Analysis and applications of 3D rectangular metallic waveguides," Opt. Express 18, 19831-19843 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  2. G. Veronis and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  4. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  5. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995). [CrossRef]
  6. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  7. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  8. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  9. T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metaldielectric- metal structures and the criterion for negative refractive index,” Opt. Express 17(2), 1136–1143 (2009). [CrossRef] [PubMed]
  10. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008). [CrossRef]
  11. A. Alù, N. Engheta, and A. Alu’, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006). [CrossRef]
  12. A. Alù, N. Engheta, and A. Alu’, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008). [CrossRef]
  13. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. Kumar, and R. Gordon, “Transmission of light through single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006). [CrossRef]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  15. E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” J. Lightwave Technol. 25(9), 2547–2562 (2007). [CrossRef]
  16. R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005). [CrossRef] [PubMed]
  17. M. A. Swillam, M. H. Bakr, and X. Li, “Efficient Design of Integrated Wideband Polarization Splitter/Combiner,” J. Lightwave Technol. 28(8), 1176–1183 (2010). [CrossRef]
  18. Electromagnetics Module User’s Guide (Comsol, 2007), Sweden. http://www.comsol.com .
  19. E. D. Palik, Handbook of optical constants of solids, (Academic Press, Inc. 1985).
  20. FDTD Solutions Reference Guide, (Lumerical Solutions, 2009).
  21. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95(6), 063901 (2005). [CrossRef] [PubMed]
  22. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  23. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006). [CrossRef] [PubMed]
  24. E. Feigenbaum, N. Kaminski, and M. Orenstein, “Negative dispersion: a backward wave or fast light? Nanoplasmonic examples,” Opt. Express 17(21), 18934–18939 (2009). [CrossRef]
  25. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ Light,” Prog. Opt. 43, 497–530 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited