OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19844–19859

Point-by-point written fiber-Bragg gratings and their application in complex grating designs

Graham D. Marshall, Robert J. Williams, Nemanja Jovanovic, M. J. Steel, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19844-19859 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating’s refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

© 2010 OSA

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(230.7408) Optical devices : Wavelength filtering devices
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 15, 2010
Revised Manuscript: August 8, 2010
Manuscript Accepted: August 24, 2010
Published: September 2, 2010

Graham D. Marshall, Robert J. Williams, Nemanja Jovanovic, M. J. Steel, and Michael J. Withford, "Point-by-point written fiber-Bragg gratings and their application in complex grating designs," Opt. Express 18, 19844-19859 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 . [CrossRef]
  2. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 . [CrossRef] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 . [CrossRef]
  4. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 . [CrossRef] [PubMed]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 . [CrossRef] [PubMed]
  6. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 . [CrossRef] [PubMed]
  7. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 . [CrossRef]
  8. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 . [CrossRef]
  9. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 . [CrossRef]
  10. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 . [CrossRef] [PubMed]
  11. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 . [CrossRef]
  12. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 . [CrossRef]
  13. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 . [CrossRef]
  14. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 . [CrossRef] [PubMed]
  15. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 . [CrossRef] [PubMed]
  16. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 . [CrossRef]
  17. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 . [CrossRef] [PubMed]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 . [CrossRef]
  19. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 . [CrossRef] [PubMed]
  20. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 . [CrossRef]
  21. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 . [CrossRef]
  22. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 . [CrossRef]
  23. M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 . [CrossRef] [PubMed]
  24. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005), http://dx.doi.org/10.1364/OPEX.13.004180 . [CrossRef] [PubMed]
  25. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 . [CrossRef] [PubMed]
  26. A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 . [CrossRef]
  27. S. Ha and A. A. Sukhorukov, “Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers,” J. Opt. Soc. Am. B 25(12), C15–C22 (2008), http://dx.doi.org/10.1364/JOSAB.25.000C15 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited