OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19876–19893

3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images

Xueli Chen, Xinbo Gao, Duofang Chen, Xiaopeng Ma, Xiaohui Zhao, Man Shen, Xiangsi Li, Xiaochao Qu, Jimin Liang, Jorge Ripoll, and Jie Tian  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19876-19893 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.

© 2010 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 14, 2010
Revised Manuscript: July 4, 2010
Manuscript Accepted: August 12, 2010
Published: September 3, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Xueli Chen, Xinbo Gao, Duofang Chen, Xiaopeng Ma, Xiaohui Zhao, Man Shen, Xiangsi Li, Xiaochao Qu, Jimin Liang, Jorge Ripoll, and Jie Tian, "3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images," Opt. Express 18, 19876-19893 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  3. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008). [CrossRef] [PubMed]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005). [CrossRef] [PubMed]
  5. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  6. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  7. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006), http://www.opticsinfobase.org/as/viewmedia.cfm?id=97670&seq=0 . [CrossRef] [PubMed]
  8. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004), http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=81637&seq=0 . [CrossRef] [PubMed]
  9. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-15-26-18300&seq=0 . [CrossRef] [PubMed]
  10. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/jdt/viewmedia.cfm?id=85344&seq=0 . [CrossRef] [PubMed]
  11. Y. J. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 . [CrossRef] [PubMed]
  12. J. C. Feng, K. B. Jia, G. R. Yan, S. P. Zhu, C. H. Qin, Y. J. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 . [CrossRef] [PubMed]
  13. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006). [CrossRef] [PubMed]
  14. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008). [CrossRef] [PubMed]
  15. A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010). [CrossRef] [PubMed]
  16. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003). [CrossRef] [PubMed]
  17. J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18(28 & 29), 1403–1431 (2004). [CrossRef]
  18. R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005). [CrossRef]
  19. X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-18-16266&seq=0 . [CrossRef] [PubMed]
  20. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003). [CrossRef] [PubMed]
  21. Q. Z. Zhang, L. Yin, Y. Y. Tan, Z. Yuan, and H. B. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16(3), 1481–1486 (2008), http://www.opticsinfobase.org/josab/viewmedia.cfm?id=149907&seq=0 . [CrossRef] [PubMed]
  22. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt. 46(17), 3617–3627 (2007). [CrossRef] [PubMed]
  23. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996). [CrossRef] [PubMed]
  24. A. Ishimaru, Wave propagation and scattering in random media (Academic, New York, 1978).
  25. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  26. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619 (1984). [CrossRef]
  27. M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002). [CrossRef]
  28. G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).
  29. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007). [CrossRef]
  30. H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004). [CrossRef] [PubMed]
  31. R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17(17), 14481–14494 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-17-14481&seq=0 . [CrossRef] [PubMed]
  32. B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009). [CrossRef] [PubMed]
  33. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited