OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19920–19929

Broadband one-dimensional photonic crystal wave plate containing single-negative materials

Yihang Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19920-19929 (2010)
http://dx.doi.org/10.1364/OE.18.019920


View Full Text Article

Enhanced HTML    Acrobat PDF (1840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

© 2010 OSA

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: June 18, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 23, 2010
Published: September 3, 2010

Citation
Yihang Chen, "Broadband one-dimensional photonic crystal wave plate containing single-negative materials," Opt. Express 18, 19920-19929 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers, ” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  4. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65(21), 2646–2649 (1990). [CrossRef] [PubMed]
  5. A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66(16), 2064–2067 (1991). [CrossRef] [PubMed]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997). [CrossRef]
  7. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  8. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  9. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, and S. B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett. 83(19), 3870–3872 (2003). [CrossRef]
  10. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82(7), 1036–1038 (2003). [CrossRef]
  11. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82(16), 2568–2570 (2003). [CrossRef]
  12. E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86(15), 151112 (2005). [CrossRef]
  13. Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89(6), 061121 (2006). [CrossRef]
  14. W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34(17), 2676–2678 (2009). [CrossRef] [PubMed]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  17. L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70(24), 245102 (2004). [CrossRef]
  18. Y. H. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92(1), 011925 (2008). [CrossRef]
  19. Y. H. Chen, “Omnidirectional and independently tunable defect modes in fractal photonic crystals containing single-negative materials,” Appl. Phys. B 95(4), 757–761 (2009). [CrossRef]
  20. W. Li-Gang, L. Nian-Hua, L. Qiang, and Z. Shi-Yao, “Propagation of coherent and partially coherent pulses through one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016601 (2004). [CrossRef] [PubMed]
  21. D. W. Yeh and C. J. Wu, “Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials,” Opt. Express 17(19), 16666–16680 (2009). [CrossRef] [PubMed]
  22. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003). [CrossRef]
  23. T. Fujishige, C. Caloz, and T. Itoh, “Experimental demonstration of transparency in the ENG-MNG pair in a CRLH transmission-line implementation,” Microw. Opt. Technol. Lett. 46(5), 476–481 (2005). [CrossRef]
  24. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of E-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056615 (2006). [CrossRef]
  25. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002). [CrossRef]
  26. A. Lakhtakia and C. M. Krowne, “Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity material (alias left-handed material),” Optik (Stuttg.) 114(7), 305–307 (2003).
  27. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  28. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6 Pt 2), 065602 (2003). [CrossRef]
  29. R. P. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2 Pt 2), 026606 (2007). [CrossRef] [PubMed]
  30. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006). [CrossRef]
  31. J. M. Manceau, N. H. Shen, M. Kafesaki, C. M. Soukoulis, and S. Tzortzakis, “Dynamic response of metamaterials in the terahertz regime: Blueshift tunability and phase modulation,” Appl. Phys. Lett. 96(2), 021111 (2010). [CrossRef]
  32. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008). [CrossRef] [PubMed]
  33. J. F. Dong, J. F. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009). [CrossRef] [PubMed]
  34. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). [CrossRef] [PubMed]
  35. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  36. A. Alù and N. Engheta, “All optical metamaterial circuit board at the nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited