OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19941–19950

Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping

Susanne Zwick, Christian Schaub, Tobias Haist, and Wolfgang Osten  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19941-19950 (2010)
http://dx.doi.org/10.1364/OE.18.019941


View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new kind of light field to improve and simplify the trapping process of axially displaced particles. To this end we employ a light field with an axially expanded intensity distribution, which at the same time enables stable axial trapping. We present simulations of the axial intensity distribution of the novel trapping field and first experimental results, which demonstrate the improvement of the reliability of the axial trapping process. The method can be used to automate trapping of particles that are located outside of the focal plane of the microscope.

© 2010 Optical Society of America

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: June 28, 2010
Revised Manuscript: August 9, 2010
Manuscript Accepted: August 9, 2010
Published: September 3, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Susanne Zwick, Christian Schaub, Tobias Haist, and Wolfgang Osten, "Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping," Opt. Express 18, 19941-19950 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. S. Chu, "Laser manipulation of atoms and particles," Science 253, 861-866 (1991). [CrossRef] [PubMed]
  3. A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001). [CrossRef] [PubMed]
  4. Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).
  5. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999). [CrossRef]
  6. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999). [CrossRef]
  7. J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  8. S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published). [PubMed]
  9. T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006). [CrossRef]
  10. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  11. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995). [CrossRef]
  12. N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996). [CrossRef]
  13. D. W. Zhang, and X.-C. Yuan, "Optical doughnut for optical tweezers," Opt. Lett. 28, 740-742 (2003). [CrossRef] [PubMed]
  14. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009). [CrossRef]
  15. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, "Optical mirror trap with a large field of view," Opt. Express 17, 19414-19423 (2009). [CrossRef] [PubMed]
  16. J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004). [CrossRef]
  17. M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, "Fast hologram computation and aberration control for holographic tweezers," Proc. SPIE 5930 (2005). [CrossRef]
  18. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, "Aberration correction in holographic optical tweezers," Opt. Express 14, 4169-4174 (2006). [CrossRef] [PubMed]
  19. A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008). [CrossRef]
  20. J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004). [CrossRef]
  21. K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004). [CrossRef]
  22. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001). [CrossRef] [PubMed]
  23. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  24. F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009). [CrossRef]
  25. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001). [CrossRef]
  26. J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001). [CrossRef]
  27. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  28. D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003). [CrossRef] [PubMed]
  29. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited