OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19951–19956

An interferometric current sensor based on optical fiber micro wires

Mohammad Belal, Zhang-qi Song, Yongming Jung, Gilberto Brambilla, and Trevor Newson  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19951-19956 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we demonstrate a compact current sensor using the optic fiber micro wire, based on the idea of interferometrically measuring the thermally induced optical phase shifts as a result of heat produced due to the flow of electric current over short transit lengths. A responsivity of 1.28 x 10-4 rad/I2 at 50Hz of current signal has been shown, with capability of measuring alternating current signals up to 500Hz.

© 2010 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:

Original Manuscript: June 24, 2010
Revised Manuscript: August 30, 2010
Manuscript Accepted: August 30, 2010
Published: September 3, 2010

Mohammad Belal, Zhang-qi Song, Yongming Jung, Gilberto Brambilla, and Trevor Newson, "An interferometric current sensor based on optical fiber micro wires," Opt. Express 18, 19951-19956 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010). [CrossRef]
  2. L. Tong, “Brief introduction to optical microfibers and nanofibers,” Front. Optoelectron. China 3(1), 54–60 (2010). [CrossRef]
  3. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005). [CrossRef] [PubMed]
  4. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  5. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008). [CrossRef] [PubMed]
  6. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  7. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  8. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008). [CrossRef]
  9. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005). [CrossRef] [PubMed]
  10. C.-Y. Chao and L. Jay Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006). [CrossRef]
  11. N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008). [CrossRef]
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  14. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007). [CrossRef] [PubMed]
  15. F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008). [CrossRef]
  16. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010). [CrossRef] [PubMed]
  17. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31(18), 2681–2683 (2006). [CrossRef] [PubMed]
  18. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett. 35(3), 378–380 (2010). [CrossRef] [PubMed]
  19. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003). [CrossRef]
  20. R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989). [CrossRef]
  21. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981). [CrossRef]
  22. W.-W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42(4), 896–897 (2003). [CrossRef]
  23. G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980). [CrossRef]
  24. K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).
  25. D. A. Jackson, “Recent progress in monomode fibre-optic sensors,” Meas. Sci. Technol. 5(6), 621–638 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited