OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19957–19965

Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode

G. Sun, R. A. Soref, and H. H. Cheng  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 19957-19965 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents modeling and simulation of a silicon-based group IV semiconductor injection laser diode in which the active region has a multiple quantum well structure formed with Ge0.9Sn0.1 quantum wells separated by Ge0.75Si0.1Sn0.15 barriers. These alloy compositions were chosen to satisfy three conditions simultaneously: a direct band gap for Ge0.9Sn0.1, type-I band alignment between Ge0.9Sn0.1 and Ge0.75Si0.1Sn0.15, and a lattice match between wells and barriers. This match ensures that the entire structure can be grown strain free upon a relaxed Ge0.75Si0.1Sn0.15 buffer on a silicon substrate – a CMOS compatible process. Detailed analysis is performed for the type I band offsets, carrier lifetime, optical confinement, and modal gain. The carrier lifetime is found to be dominated by the spontaneous radiative process rather than the Auger process. The modal gain has a rather sensitive dependence on the number of quantum wells in the active region. The proposed laser is predicted to operate at 2.3 μm in the mid infrared at room temperature.

© 2010 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 25, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 12, 2010
Published: September 3, 2010

G. Sun, R. A. Soref, and H. H. Cheng, "Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode," Opt. Express 18, 19957-19965 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010). [CrossRef]
  2. R. A. Soref, J. Kouvetakis and J. Menendez, “Advances in SiGeSn/Ge technology,” Mater. Res. Soc. Symp. Proc., 958, 0958–L01–08 (2007).
  3. G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010). [CrossRef]
  4. J. Tolle, R. Roucka, V. D'Costa, J. Menendez, A. Chizmeshya, and J. Kouvetakis “Sn-based group-IV semiconductors on Si: new infrared materials and new templates for mismatched epitaxy,” Mater. Res. Soc. Symp. Proc.891, 0891–EE12–08 (2006).
  5. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009). [CrossRef] [PubMed]
  6. Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010). [CrossRef]
  7. G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007). [CrossRef]
  8. R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991). [CrossRef]
  9. H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007). [CrossRef]
  10. M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988). [CrossRef] [PubMed]
  11. S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors, (John Wiley and Sons, England, 2005)
  12. V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006). [CrossRef]
  13. V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006). [CrossRef]
  14. J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989). [CrossRef] [PubMed]
  15. M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966). [CrossRef]
  16. G. P. Agrawal, and N. K. Dutta, Long-Wavelength Semiconductor Lasers, (Van Nostrand Reinhold Company Inc. New York, 1986).
  17. Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited