OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19983–19993

Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber

Raja Ahmad, Stephane Chatigny, and Martin Rochette  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19983-19993 (2010)
http://dx.doi.org/10.1364/OE.18.019983


View Full Text Article

Enhanced HTML    Acrobat PDF (2761 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband amplification of several high power communication channels is demonstrated using a multimode Erbium-Ytterbium doped fiber (EYDF) amplifier. The multimode feature of this amplifier aims at simultaneously enabling wide gain bandwidth and high output power. The amplifier provides a gain bandwidth spanning over the 1535.0 nm-1565.8 nm band. The amplifier also provides a high output power of >30.2 dBm, with ± 2.4 dB natural gain flatness over the bandwidth of interest. The performance of the amplifier is assessed in a 40 Gb/s WDM system, featuring no trace of modal dispersion in the eye diagram and a low power penalty (< 0.4 dB) on the bit error ratio (BER).

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 6, 2010
Revised Manuscript: August 17, 2010
Manuscript Accepted: August 21, 2010
Published: September 3, 2010

Citation
Raja Ahmad, Stephane Chatigny, and Martin Rochette, "Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber," Opt. Express 18, 19983-19993 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jaouën, J.-P. Bouzinac, J.-M. P. Delavaux, C. Chabran, and M. Le Flohic, “Generation of four-wave mixing products inside WDM c-band 1 W Er 3+/Yb3+ amplifier,” Electron. Lett. 36(3), 233–235 (2000). [CrossRef]
  2. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “A tunable WDM wavelength converter based on cross-phase modulation effects in normal dispersion holey fiber,” IEEE Photon. Technol. Lett. 15(3), 437–439 (2003). [CrossRef]
  3. Z. Jiao and X. Zhang, “Experimental Investigation of the Role of Four-Wave Mixing in Supercontinuum Generation From a Multimode 975-nm Pumped Fiber Ring Cavity,” IEEE Photon. Technol. Lett. 21(7), 420–422 (2009). [CrossRef]
  4. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13(14), 5409–5415 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5409 . [CrossRef] [PubMed]
  5. Y. Deiss, C. McIntosh, G. Williams, and J. Delavaux, “Gain flatness of a 30dBm tandem Er-Er/Yb double-clad fiber amplifier for WDM transmission,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WJ6.
  6. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Long-span repeaterless transmission systems with optical amplifiers using pulse width management,” J. Lightwave Technol. 16(6), 977–985 (1998). [CrossRef]
  7. M. X. Ma, H. D. Kidorf, K. Rottwitt, F. W. Kerfoot, and C. R. Davidson, “240-km repeater spacing in a 5280-km WDM system experiment using 8×2.5 Gb/s NRZ transmission,” IEEE Photon. Technol. Lett. 10(6), 893–895 (1998). [CrossRef]
  8. I. Yoshihisa, “Ultra-long Span Repeaterless Transmission System Technologies,” NEC Tech. J. 5, 51–55 (2010).
  9. Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, and O. Mitomi, 320 Gbits/s (8x40) Gbits/s WDM transmission over 367-km zero-dispersion-flattened line with 120-km repeater spacing using carrier-suppressed return-to zeron pulse format,” in Optical Amplifiers and their Applications, S. Kinoshita, J. Livas, and G. van den Hoven, eds., Vol. 30 of Trends in Optics and Photonics (Optical Society of America, 1999), paper SN1.
  10. P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36(16), 1397–1399 (2000). [CrossRef]
  11. G. G. Vienne, J. E. Caplen, Liang Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998). [CrossRef]
  12. H. Ahmad, S. Shahi, and S. W. Harun, “Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser,” Laser Phys. 20(3), 716–719 (2010). [CrossRef]
  13. S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultrawideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004). [CrossRef]
  14. B. O. Guan, H. Y. Tam, S. Y. Liu, P. K. A. Wai, and N. Sugimoto, “Ultrawide-band La-codoped Bi2O3-based EDFA for L-band DWDM systems,” IEEE Photon. Technol. Lett. 15(11), 1525–1527 (2003). [CrossRef]
  15. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ Co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5(3), 301–303 (1993). [CrossRef]
  16. G. G. Vienne, W. S. Brocklesby, R. S. Brown, Z. J. Chen, J. D. Minelly, J. E. Roman, and D. N. Payne, “Role of Aluminum in Ytterbium-Erbium Codoped Phosphoaluminosilicate Optical Fibers,” Opt. Fiber Technol. 2(4), 387–393 (1996). [CrossRef]
  17. Y. Jeong, J. K. Sahu, D. B. Soh, C. A. Codemard, and J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005). [CrossRef] [PubMed]
  18. J. Kringlebotn, J. Archambault, L. Reekie, J. Townsend, G. Vienne, and D. Payne, “Efficient low-noise grating-feedback fiber laser doped with Er3+:Yb3+,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, 1994), paper TuG5.
  19. S. Taccheo, P. Laporta, O. Svelto, and G. De Geronimo, “Theoretical and experimental analysis of intensity noise in a codoped erbium–ytterbium glass laser,” Appl. Phys. B 66(1), 19–26 (1998). [CrossRef]
  20. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29(22), 2590–2592 (2004). [CrossRef] [PubMed]
  21. G. Canat, L. Lombard, A. Dolfi, M. Valla, C. Planchat, B. Augère, P. Bourdon, V. Jolivet, C. Besson, Y. Jaouën, S. Jetschke, S. Unger, J. Kirchhof, E. Gueorguiev, and C. Vitre, “High Brightness 1.5 μm Pulsed Fiber Laser for Lidar: From Fibers to Systems,” Fiber Integr. Opt. 27(5), 422–439 (2008). [CrossRef]
  22. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, “Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 microm,” Opt. Express 13(4), 1221–1227 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-4-1221 . [CrossRef] [PubMed]
  23. G. Nykolak, P. F. Szajowski, J. Jacques, H. M. Presby, G. E. Abate, G. E. Tourgee, and J. J. Auborn, “4×2.5 Gb/s 4.4 km WDM free-space optical link at 1550 nm,” in Optical Fiber Communication Conference,1999, and the International Conference on Integrated Optics and Optical Fiber Communication, Vol. Supplement of 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD11.
  24. J. Ma, M. Li, L. Tan, Y. Zhou, S. Yu, and Q. Ran, “Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment,” Opt. Express 17(18), 15571–15577 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-18-15571 . [CrossRef] [PubMed]
  25. P. R. Kaczmarek, T. Rogowski, E. Kopczynski, P. Karnas, and K. M. Abramski, “High output power Erbium-Ytterbium doped fibre amplifier,” in Proceedings of International Conference on Transparent Optical Networks,2008 (ICTON 2008), pp. 350–352.
  26. N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8(9), 1148–1150 (1996). [CrossRef]
  27. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989). [CrossRef]
  28. J. Koponen, M. Laurila, and M. Hotoleanu, “Inversion behavior in core- and cladding-pumped Yb-doped fiber photodarkening measurements,” Appl. Opt. 47(25), 4522–4528 (2008). [CrossRef] [PubMed]
  29. C. Simonneau, P. Bousselet, G. Melin, L. Provost, C. Moreau, X. Rejeaunier, A. Le Sauze, L. Gasca, and D. Bayart, “High-power air-clad photonic crystal fiber cladding-pumped EDFA for WDM applications in the C-band,” in Proceedings of European Conference on Optical Communications (ECOC’2003), PH Th4–1-2.
  30. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998). [CrossRef]
  31. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef]
  32. J. M. Sousa and O. G. Okhotnikov, “Multimode Er-doped fiber for single-transverse-mode amplification,” Appl. Phys. Lett. 74(11), 1528–1530 (1999). [CrossRef]
  33. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  34. A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag, 2005)
  35. J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).
  36. R.G. Wiley, B.G. Clark, and J. Meitzler, “Compact, active alignment fusion splicer with automatic view-angle compensation,” United States Patent. no. 7712981.
  37. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “Experimentally verified modeling of erbium-ytterbium co-doped DFB fiber lasers,” J. Lightwave Technol. 23(3), 1380–1392 (2005). [CrossRef]
  38. G. P. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley, 2005).
  39. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA's with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited