OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20049–20058

Development of a time-gated system for Raman spectroscopy of biological samples

Florian Knorr, Zachary J. Smith, and Sebastian Wachsmann-Hogiu  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20049-20058 (2010)
http://dx.doi.org/10.1364/OE.18.020049


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A time gating system has been constructed that is capable of recording high quality Raman spectra of highly fluorescing biological samples while operating below the photodamage threshold. Using a collinear gating geometry and careful attention to power conservation, we have achieved all-optical switching with a one picosecond gating time and 5% peak gating efficiency. The energy per pulse in this instrument is more than 3 orders of magnitude weaker than previous reports. Using this system we have performed proof-of-concept experiments on a sample composed of perylene dissolved in toluene, and the stem of a Jasminum multiflorum plant, the latter case being particularly important for the study of plants used in production of cellulosic biofuels. In both cases, a high SNR spectrum of the high-wavenumber region of the spectrum was recorded in the presence of an overwhelming fluorescence background.

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.3270) Nonlinear optics : Kerr effect

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 9, 2010
Revised Manuscript: August 30, 2010
Manuscript Accepted: August 31, 2010
Published: September 3, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Florian Knorr, Zachary J. Smith, and Sebastian Wachsmann-Hogiu, "Development of a time-gated system for Raman spectroscopy of biological samples," Opt. Express 18, 20049-20058 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, "Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue," J. Invest. Dermatol. 122, 443-449 (2004). [CrossRef] [PubMed]
  2. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, "Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy," J. Invest. Dermatol. 119, 64-69 (2002). [CrossRef] [PubMed]
  3. C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, "Raman microspectroscopy for skin cancer detection in vitro," J. Biomed. Opt. 13, 024013 (2008). [CrossRef] [PubMed]
  4. K. Chen, Y. Qin, F. Zheng, M. Sun, and D. Shi, "Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells," Opt. Lett. 31, 2015-2017 (2006). [CrossRef] [PubMed]
  5. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, "Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy," Anal. Chem. 80, 2180-2187 (2008). [CrossRef] [PubMed]
  6. Q. Y. Zhu, R. G. Quivey, and A. J. Berger, "Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy," J. Biomed. Opt. 9, 1182-1186 (2004). [CrossRef] [PubMed]
  7. P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, "Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations," Appl. Environ. Microbiol. 71, 1626-1637 (2005). [CrossRef]
  8. T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, "Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment," Biophys. J. 98, 742a (2010). [CrossRef]
  9. K. A. Dehring, N. J. Crane, A. R. Smukler, J. B. McHugh, B. J. Roessler, and M. D. Morris, "Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy," Appl. Spectrosc. 60, 1134-1141 (2006). [CrossRef] [PubMed]
  10. D. Qi, and A. J. Berger, "Chemical concentration measurement in blood serum and urine samples using liquidcore optical fiber Raman spectroscopy," Appl. Spectrosc. 46, 1726-1734 (2007).
  11. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, "Effective rejection of fluorescence interference in raman spectroscopy using a shifted excitation difference technique," Appl. Spectrosc. 46, 707-711 (1992). [CrossRef]
  12. C. A. Lieber, and A. Mahadevan-Jansen, "Automated method for subtraction of fluorescence from biological Raman spectra," Appl. Spectrosc. 57, 1363-1367 (2003). [CrossRef] [PubMed]
  13. B. D. Beier, and A. J. Berger, "Method for automated background subtraction from raman spectra containing known contaminants," Analyst (Lond.) 134, 1198-1202 (2009). [CrossRef] [PubMed]
  14. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, "Online fluorescence suppression in modulated raman spectroscopy," Anal. Chem. 82, 738-745 (2010). [CrossRef]
  15. P. Matousek, M. Towrie, A. Stanley, and A. W. Parker, "Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating," Appl. Spectrosc. 53, 1485-1489 (1999). [CrossRef]
  16. P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, "Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate," J. Raman Spectrosc. 32, 983-988 (2001). [CrossRef]
  17. J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, "The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study," Photochem. Photobiol. Sci. 2, 542-554 (2003). [CrossRef]
  18. M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, "Kerr-gated time resolved Raman spectroscopy of equine cortical bone tissue," J. Biomed. Opt. 10, 014014 (2005). [CrossRef]
  19. R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, "Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy," Analyst (Lond.) 132, 48-53 (2007). [CrossRef]
  20. V. V. Yakovlev, "Time-gated confocal Raman microscopy," Spectroscopy 22, 41-45 (2007).
  21. P. Matousek, "Deep non-invasive Raman spectroscopy of living tissue and powders," Chem. Soc. Rev. 36, ••• (2007). [CrossRef] [PubMed]
  22. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, "Non-thermal ablation of neural tissue with femtosecond laser pulses," Appl. Phys. B 66, 121-128 (1998). [CrossRef]
  23. N. Gierlinger, and M. Schwanninger, "Chemical imaging of poplar wood cell walls by confocal Raman microscopy," Plant Physiol. 140, 1246-1254 (2006). [CrossRef] [PubMed]
  24. M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, "Raman imaging of cell wall polymers in Aradopsis thaliana," Biochem. Biophys. Res. Commun. 395, 521-523 (2010). [CrossRef]
  25. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003). [CrossRef]
  26. R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, "Nonlinear optical characteristics of carbon disulfide," Opt. Spectrosc. 100, 108-118 (2006). [CrossRef]
  27. A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, "The fluorescence of perylene-doped langmuir-blodgett films," Chem. Phys. Lett. 173, 425-429 (1990). [CrossRef]
  28. J. K. Wilmshurst, and H. J. Bernstein, "The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene- α α’-d 1/6," Can. J. Chem. 35, 911-925 (1957). [CrossRef]
  29. E. M. Rubin, "Genomics of cellulosic biofuels," Nature 454, 841-845 (2008). [CrossRef] [PubMed]
  30. Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, "Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials," Anal. Chem. 82, 2608-2611 (2010). [CrossRef] [PubMed]
  31. J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, "Plant cell wall characterization using scanning probe microscopy techniques," Biotechnol. Biofuels 2, 17 (2009). [CrossRef] [PubMed]
  32. A. Castellan, and R. S. Davidson, ""Steady-state and dynamic fluorescence emission from abies wood," J Photochem. Photobiol. A 78, 275-279 (1994). [CrossRef]
  33. U. P. Agarwal, and S. A. Ralph, "FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana)," Appl. Spectrosc. 51, 1648-1655 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited