OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20059–20071

Simultaneous multi-laser, multi-species trace- level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy

Yabai He, Ruifeng Kan, Florian V. Englich, Wenqing Liu, and Brian J. Orr  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20059-20071 (2010)
http://dx.doi.org/10.1364/OE.18.020059


View Full Text Article

Enhanced HTML    Acrobat PDF (1637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The greenhouse-gas molecules CO2, CH4, and H2O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

© 2010 OSA

ToC Category:
Spectroscopy

History
Original Manuscript: July 22, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: August 31, 2010
Published: September 3, 2010

Citation
Yabai He, Ruifeng Kan, Florian V. Englich, Wenqing Liu, and Brian J. Orr, "Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy," Opt. Express 18, 20059-20071 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Inventory of U. S. Greenhouse Gas Emissions and Sinks, 1990–2008 (U.S. Environmental Protection Agency #430-R-10–006; April 2010); www.epa.gov/climatechange/emissions/usinventoryreport.html
  2. K. W. Busch, and M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Am. Chem. Soc., 1999).
  3. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  4. G. Berden, and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, 2009).
  5. Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002). [CrossRef]
  6. Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004). [CrossRef]
  7. Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005). [CrossRef] [PubMed]
  8. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006). [CrossRef]
  9. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.). [CrossRef]
  10. R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003). [CrossRef]
  11. Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Multi-wavelength sensing of greenhouse gases by rapidly swept continuous-wave cavity ringdown spectroscopy” in Conference on Lasers and Electro-Optics / International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMDD3; www.opticsinfobase.org/abstract.cfm?URI= CLEO-2009-CMDD3
  12. M. Wang, Y. Zhang, J. Liu, W. Liu, R. Kan, T. Wang, D. Chen, J. Chen, X. Wang, H. Xia, and X. Fang, “Applications of a tunable diode laser absorption spectrometer in monitoring greenhouse gases,” Chin. Opt. Lett. 4, 363–365 (2006).
  13. H. Xia, W. Liu, Y. Z. Zhang, R. K. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, and H. Geng, “An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 6, 437–440 (2008). [CrossRef]
  14. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000). [CrossRef]
  15. E. A. Fallows, T. G. Cleary, and J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48(4), 695–703 (2009). [CrossRef] [PubMed]
  16. C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008). [CrossRef]
  17. E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008). [CrossRef]
  18. A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005). [CrossRef]
  19. R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009). [CrossRef] [PubMed]
  20. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  21. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett. 32(3), 307–309 (2007). [CrossRef] [PubMed]
  22. F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006). [CrossRef]
  23. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, and Y. Cui, “Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 4, 116–118 (2006).
  24. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, and Y. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5, 54–57 (2007).
  25. A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007). [CrossRef]
  26. F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009). [CrossRef]
  27. L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited