OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20086–20095

Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates

Afshin Ghaffari, Amir Hosseini, Xiaochuan Xu, David Kwong, Harish Subbaraman, and Ray T. Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20086-20095 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.

© 2010 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Integrated Optics

Original Manuscript: June 2, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 16, 2010
Published: September 3, 2010

Afshin Ghaffari, Amir Hosseini, Xiaochuan Xu, David Kwong, Harish Subbaraman, and Ray T. Chen, "Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates," Opt. Express 18, 20086-20095 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010). [CrossRef]
  2. G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009). [CrossRef]
  3. D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008). [CrossRef]
  4. M. G. Legally, “Group IV Crystalline Nanomembranes: Materials, Technology, and Potential Applications,” Proc. IEEE 4244–4403, 104–106 (2009).
  5. E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005). [CrossRef]
  6. F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001). [CrossRef]
  7. M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010). [CrossRef]
  8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009). [CrossRef]
  9. H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006). [CrossRef]
  10. H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007). [CrossRef]
  11. H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009). [CrossRef]
  12. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  13. T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009). [CrossRef]
  14. R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Am. 68(5), 583–592 (1978). [CrossRef]
  15. J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998). [CrossRef]
  16. A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).
  17. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006). [CrossRef] [PubMed]
  18. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  19. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004). [CrossRef]
  20. P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15(11), 6569–6575 (2007). [CrossRef] [PubMed]
  21. G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited