OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20115–20124

Transmission of surface plasmon polaritons through a nanowire array: mechano-optical modulation and motion sensing

Dmitry Yu. Fedyanin and Aleksey V. Arsenin  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20115-20124 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1877 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the coupled-mode theory, we study the transmission of surface plasmon polaritons (SPPs) guided by a thin metal film through an array of N identical nanowires, which are parallel to each other and to the surface of the metal film. By varying the parameters of the nanowire array, one can control the intensity of the transmitted SPP. Furthermore, we propose a novel mechano-optical modulation technique. The intensity of the transmitted SPP is modulated by changing the distance between the nanowire array and the metal film. The modulation frequency is in the kilohertz or megahertz range, owing to the unique mechanical properties of nanowires.

© 2010 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(290.0290) Scattering : Scattering
(250.4110) Optoelectronics : Modulators

ToC Category:
Optics at Surfaces

Original Manuscript: July 8, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: August 31, 2010
Published: September 7, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Dmitry Yu. Fedyanin and Aleksey V. Arsenin, "Transmission of surface plasmon polaritons through a nanowire array: mechano-optical modulation and motion sensing," Opt. Express 18, 20115-20124 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. I. Bozhevolnyi, ed., Plasmonic Nanoguides and Circuits, (Pan Stanfod Publishing, Singapore, 2009).
  2. V. M. Shalaev and S. Kawata, ed., Nanophotonics with Surface Plasmons, (Elsevier, The Netherlands, 2007).
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  6. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000). [CrossRef]
  7. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmonpolariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005). [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244(1-6), 455–459 (2005). [CrossRef]
  9. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  11. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  12. Z. L. Wang, “Mechanic Properties of Nanowires and Nanobelts,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, J. A. Schwarz; C. I. Contescu; K. Putyera (Taylor&Francis, 2004).
  13. J. Gaillard, M. J. Skove, R. Ciocan, and A. M. Rao, “Electrical detection of oscillations in microcantilevers and nanocantilevers,” Rev. Sci. Instrum. 77(7), 073907 (2006). [CrossRef]
  14. D. A. Dikin, X. Chen, W. Ding, G. Wagner, and R. S. Ruoff, “Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation,” J. Appl. Phys. 93(1), 226–230 (2003). [CrossRef]
  15. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3(9), 533–537 (2008). [CrossRef] [PubMed]
  16. J. Zhou, C. Lao, P. Gao, W. Mai, W. Hughes, S. Deng, N. Xu, and Z. Wang, “Nanowire as pico-gram balance at workplace atmosphere,” Solid State Commun. 139(5), 222–226 (2006). [CrossRef]
  17. B. Ilica, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95(7), 3694 (2004). [CrossRef]
  18. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  19. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  20. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed., (Springer, Berlin, 1979).
  21. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  22. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).
  23. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994). [CrossRef]
  24. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited