OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20143–20150

Generation of squeezed light with a monolithic optical parametric oscillator: Simultaneous achievement of phase matching and cavity resonance by temperature control

Hidehiro Yonezawa, Koyo Nagashima, and Akira Furusawa  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20143-20150 (2010)
http://dx.doi.org/10.1364/OE.18.020143


View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We generate squeezed state of light at 860 nm with a monolithic optical parametric oscillator. The optical parametric oscillator consists of a periodically poled KTiOPO4 crystal, both ends of which are spherically polished and mirror-coated. We achieve both phase matching and cavity resonance by controlling only the temperature of the crystal. We observe up to −8.0±0.2 dB of squeezing with the bandwidth of 142 MHz. Our technique makes it possible to drive many monolithic cavities simultaneously by a single laser. Hence our monolithic optical parametric oscillator is quite suitable to continuous-variable quantum information experiments where we need a large number of highly squeezed light beams.

© 2010 Optical Society of America

OCIS Codes
(120.2920) Instrumentation, measurement, and metrology : Homodyning
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: July 19, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 1, 2010
Published: September 7, 2010

Citation
Hidehiro Yonezawa, Koyo Nagashima, and Akira Furusawa, "Generation of squeezed light with a monolithic optical parametric oscillator: Simultaneous achievement of phase matching and cavity resonance by temperature control," Opt. Express 18, 20143-20150 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23, 1693–1708 (1981). [CrossRef]
  2. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mckenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008). [CrossRef]
  3. S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables (Kluwer Academic Publishers, Dordrecht, 2003).
  4. N. J. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information with Continuous Variables of Atoms and Light (Imperial College Press, 2007). [CrossRef]
  5. R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, “Demonstration of unconditional one-way quantum computations for continuous variables,” arXiv: 1001.4860 [quant-ph] (2010).
  6. T. Aoki, G. Takahashi, T. Kajiya, J. Yoshikawa, S. L. Braunstein, P. van Loock, and A. Furusawa, “Quantum error correction beyond qubits,” Nat. Phys. 5, 541–546 (2009). [CrossRef]
  7. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985). [CrossRef] [PubMed]
  8. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986). [CrossRef] [PubMed]
  9. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691–694 (1986). [CrossRef] [PubMed]
  10. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006). [CrossRef]
  11. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15, 4321–4327 (2007). [CrossRef] [PubMed]
  12. K. Goda, E. E. Mikhailov, O. Miyakawa, S. Saraf, S. Vass, A. Weinstein, and N. Mavalvala, “Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm,” Opt. Lett. 33, 92–94 (2008). [CrossRef] [PubMed]
  13. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,” Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]
  14. G. Masada, T. Suzudo, Y. Satoh, H. Ishizuki, T. Taira, and A. Furusawa, “Efficient generation of highly squeezed light with periodically poled MgO:LiNbO3,” Opt. Express 18, 13114–13121 (2010). [CrossRef] [PubMed]
  15. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010). [CrossRef]
  16. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gr¨af, K. Danzmann, and R. Schnabel, “The GEO600 squeezed light source,” Class. Quantum Gravity 27, 084027 (2010). [CrossRef]
  17. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B Quantum Semiclassical Opt. 1, 469–474 (1999). [CrossRef]
  18. A. Yariv, Optical Electronics in Modern Communications 5th ed. (Oxford University Press, Oxford New York, 1997).
  19. G. G. Gurzadian, V. G. Dmitriev, and D. N. Nikogosian, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited