OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20151–20163

Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers

S. Pricking and H. Giessen  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20151-20163 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3905 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate by means of numerical simulations of the generalized Nonlinear Schrödinger Equation that the variation of the diameter of a tapered fiber along the fiber axis can be used as a new degree of freedom to tailor the spectrum generated by ultrashort laser pulses. We show that, apart from the cross-section geometry of the fiber and the materials used for the core, cladding, and surrounding medium, the diameter profile along the fiber axis crucially influences the soliton dynamics, the temporal and spectral evolution as well as the generation of a supercontinuum. As an example, we have investigated a few centimeters long conical waists, which reveal large differences of the output spectra depending on the incoupling direction. For a decreasing fiber diameter, we find that, keeping the pulse energy constant, a lower input peak power may generate a broader supercontinuum. We attribute this result to the dynamics of higher-order solitons. A comparison of the simulated spectra to experimentally measured ones shows excellent agreement.

© 2010 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 23, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 3, 2010
Published: September 7, 2010

Sebastian Pricking and Harald Giessen, "Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers," Opt. Express 18, 20151-20163 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000). [CrossRef]
  2. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation via stimulated Raman scattering and parametric four-wave-mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  3. J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003). [CrossRef]
  4. G. Genty, M. Lehtonen, M. Kaivola, and H. Ludvigsen, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  5. J. N. Kutz, C. Lynga, and B. J. Eggleton, "Enhanced supercontinuum generation through dispersion nmanagement," Opt. Express 13, 3989-3998 (2005). [CrossRef] [PubMed]
  6. F. Hoos, S. Pricking, and H. Giessen, "Compact portable 20 MHz solid-state femtosecond white light-laser," Opt. Express 14, 10913-10920 (2006). [CrossRef] [PubMed]
  7. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. Martijn de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). [CrossRef] [PubMed]
  8. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, "Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides," Opt. Express 15, 5382-5387 (2007). [CrossRef] [PubMed]
  9. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  10. G. P. Agrawal, Nonlinear fiber optics (Academic Press, San Diego, 1995).
  11. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45, 1095-1098 (1980). [CrossRef]
  12. A. Husakou, and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  13. G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources (Invited)," J. Opt. Soc. Am. B 24, 1771-1785 (2007). [CrossRef]
  14. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  15. P. St. J. Russell, "Photonic Crystal Fibers," Science 17, 358-362 (2003). [CrossRef]
  16. S. Pricking, and H. Giessen, "Tapering fibers with complex shape," Opt. Express 18, 3426-3437 (2010). [CrossRef] [PubMed]
  17. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12, 5840-5849 (2004). [CrossRef] [PubMed]
  18. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersion decreasing fiber," Opt. Lett. 18, 476-478 (1993). [CrossRef] [PubMed]
  19. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). [CrossRef] [PubMed]
  20. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zero dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). [CrossRef] [PubMed]
  21. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, "Optical pulse compression in dispersion decreasing photonic crystal fiber," Opt. Express 15, 13203-13211 (2007). [CrossRef] [PubMed]
  22. A. Kudlinski and A. Mussot, "Visible cw-pumped supercontinuum," Opt. Lett. 33, 2407-2409 (2008). [CrossRef] [PubMed]
  23. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). [CrossRef] [PubMed]
  24. E. C. Magi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004). [CrossRef]
  25. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). [CrossRef] [PubMed]
  26. C.-M. Chen and P. L. Kelley, "Nonlinear pulse compression in optical fibers: Scaling laws and numerical analysis," J. Opt. Soc. Am. B 19, 1961-1967 (2002). [CrossRef]
  27. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  28. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004). [CrossRef] [PubMed]
  29. J. R. Taylor, Optical solitons: Theory and Experiment (Cambridge University Press, Cambridge, 2005).
  30. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007). [CrossRef]
  31. S. Linden, H. Giessen, and J. Kuhl, "XFROG - A New Method for Amplitude and Phase Characterization of Weak Ultrashort Pulses," Phys. Status Solidi B 206, 119-124 (1999). [CrossRef]
  32. A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited