OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20183–20189

Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study

Ignacio Del Villar, Carlos R. Zamarreño, Miguel Hernaez, Francisco J. Arregui, and Ignacio R. Matias  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20183-20189 (2010)
http://dx.doi.org/10.1364/OE.18.020183


View Full Text Article

Enhanced HTML    Acrobat PDF (22444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-mode-resonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.

© 2010 OSA

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(310.6805) Thin films : Theory and design

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 18, 2010
Revised Manuscript: September 2, 2010
Manuscript Accepted: September 2, 2010
Published: September 7, 2010

Citation
Ignacio Del Villar, Carlos R. Zamarreño, Miguel Hernaez, Francisco J. Arregui, and Ignacio R. Matias, "Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study," Opt. Express 18, 20183-20189 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20183


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]
  2. I. Del Villar, I. R. Matias, and F. J. Arregui, Handbook of interferometers: research, technology and applications, (New York, 2009).
  3. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002). [CrossRef]
  4. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005). [CrossRef] [PubMed]
  5. I. Del Villar, I. R. Matías, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005). [CrossRef]
  6. Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005). [CrossRef] [PubMed]
  7. I. Del Villar, I. R. Matías, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006). [CrossRef]
  8. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006). [CrossRef] [PubMed]
  9. J. M. Corres, I. del Villar, I. R. Matías, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007). [CrossRef]
  10. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005). [CrossRef]
  11. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006). [CrossRef]
  12. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008). [CrossRef] [PubMed]
  13. R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of Fiber-Optic Long-Period Grating-Based Interferometric Sensor,” J. Lightwave Technol. 25(3), 825–829 (2007). [CrossRef]
  14. I. Del Villar, C. M. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with Indium Tin Oxide coated optical fibers for sensing application,” J. Lightwave Technol. 28(1), 111–117 (2010). [CrossRef]
  15. M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).
  16. D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005). [CrossRef] [PubMed]
  17. F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997). [CrossRef]
  18. T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982). [CrossRef]
  19. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997). [CrossRef]
  20. J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008). [CrossRef]
  21. A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005). [CrossRef]
  22. Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000). [CrossRef]
  23. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]
  24. G. P. Agrawal, Nonlinear fiber optics, p. 8., (3rd ed., Academic Press: New York, 2001).
  25. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited