OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20201–20214

The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography

Bo Zhang, Xiang Yang, Fei Yang, Xin Yang, Chenghu Qin, Dong Han, Xibo Ma, Kai Liu, and Jie Tian  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20201-20214 (2010)
http://dx.doi.org/10.1364/OE.18.020201


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

© 2010 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 6, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: September 1, 2010
Published: September 8, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Bo Zhang, Xiang Yang, Fei Yang, Xin Yang, Chenghu Qin, Dong Han, Xibo Ma, Kai Liu, and Jie Tian, "The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography," Opt. Express 18, 20201-20214 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  3. M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006). [CrossRef] [PubMed]
  4. R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008). [CrossRef] [PubMed]
  5. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008). [CrossRef] [PubMed]
  6. C. Contag, and M. H. Bachmann, "Advances in Bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002). [CrossRef] [PubMed]
  7. W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006). [CrossRef] [PubMed]
  8. C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, Y. Lv, and M. Xu, "Galerkin-based meshless methods for photon transport in the biological tissue," Opt. Express 16, 20317-20333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20317. [CrossRef] [PubMed]
  9. B. Zhang, J. Tian, D. Liu, L. Sun, X. Yang, and D. Han, "A multithread based new sparse matrix method in bioluminescence tomography," presented at Conference 7626 of SPIE on Medical Imaging, San Diego, USA, 13-18 February 2010.
  10. Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009). [CrossRef]
  11. http://developer.nvidia.com/page/home.html
  12. http://www.culatools.com/
  13. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3996. [CrossRef] [PubMed]
  14. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  15. J. J. Duderstadt, and L. J. Hamilton, Nuclear Reactor analysis, (Wiley, New York, 1976).
  16. S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).
  17. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211. [CrossRef] [PubMed]
  18. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004). [CrossRef]
  19. B. Zhang, X. Yang, C. Qin, D. Liu, S. Zhu, J. Feng, L. Sun, K. Liu, D. Han, X. Ma, X. Zhang, J. Zhong, X. Li, X. Yang, and J. Tian, "A trust region method in adaptive finite element framework for bioluminescence tomography," Opt. Express 18, 6477-6491 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-7-6477. [CrossRef] [PubMed]
  20. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  21. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef]
  22. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-169 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-10-3-159. [PubMed]
  23. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited