OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20222–20228

Enhanced transmission of electromagnetic waves through 1D plasmonic crystals

Jin-Kyu So, Hoe-Cheon Jung, Sun-Hong Min, Kyu-Ha Jang, Seung-Ho Bak, and Gun-Sik Park  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20222-20228 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (859 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmission of electromagnetic waves through thick perfect conducting slabs perforated by one-dimensional arrays of rectangular holes was studied experimentally in the microwave frequency range. The observed thickness-dependent transmission clearly exhibits the evanescent and propagating nature of the involved electromagnetic excitations on the considered structures, which are effective surface plasmons and localized waveguide resonances, respectively. The 1D crystals showing transmission based on localized resonances further manifests the frequency-dependent effective refractive index depending on the filling ratio of the holes and accompanies resonant guided wave propagation.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Diffraction and Gratings

Original Manuscript: May 26, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 28, 2010
Published: September 8, 2010

Jin-Kyu So, Hoe-Cheon Jung, Sun-Hong Min, Kyu-Ha Jang, Seung-Ho Bak, and Gun-Sik Park, "Enhanced transmission of electromagnetic waves through 1D plasmonic crystals," Opt. Express 18, 20222-20228 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  5. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  6. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006). [CrossRef] [PubMed]
  7. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007). [CrossRef] [PubMed]
  8. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004). [CrossRef] [PubMed]
  9. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007). [CrossRef]
  10. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84(15), 2742–2744 (2004). [CrossRef]
  11. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006). [CrossRef]
  12. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008). [CrossRef] [PubMed]
  13. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007). [CrossRef]
  14. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008). [CrossRef] [PubMed]
  15. Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counterstreaming electron beams,” Appl. Phys. Lett. 90(3), 031502 (2007). [CrossRef]
  16. Y. M. Shin, J. K. So, K. H. Jang, J. H. Won, A. Srivastava, and G. S. Park, “Evanescent tunneling of an effective surface plasmon excited by convection electrons,” Phys. Rev. Lett. 99(14), 147402 (2007). [CrossRef] [PubMed]
  17. Y. M. Shin, J. K. So, J. H. Won, and G. S. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007). [CrossRef]
  18. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  19. F. J. Garcia-Vidal, L. Martın-Moreno, and J. B. Pendry, “Surfaces with holes in them: newplasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  20. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006). [CrossRef] [PubMed]
  21. The travelling wave tube amplifier with ~60 dB gain was unavailable during the experiment for Fig. 2. This seriously lowered the signal levels compared to noise level, which caused the results in Fig. 2 to be noisy compared to those in Fig. 4.
  22. A. Mary, S. Rodrigo, L. Martín-Moreno, and F. García-Vidal “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007). [CrossRef]
  23. C. S. T. Microwave Studio, ®, © 2008 CST - Computer Simulation Technology, Wellesley Hills, MA, USA, www.cst.com .
  24. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48 (2000). [CrossRef]
  25. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited