OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20282–20288

A nanostructured Fabry-Perot interferometer

Tianhua Zhang, Zhongcheng Gong, Rebecca Giorno, and Long Que  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20282-20288 (2010)
http://dx.doi.org/10.1364/OE.18.020282


View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polymer-based micromachined Fabry-Perot interferometer (µFPI) with embedded nanostructures in its cavity, called nanostructured-FPI, is reported. The nanostructures inside the cavity are a layer of Au-coated nanopores. As a refractive-index sensitive optical sensor, it offers the following advantages over a traditional µFPI for label-free biosensing applications, including increased sensing surface area, extended penetration depth of the excitation light and amplified optical transducing signals. For a nanostructured-FPI with nanopore size of 50 nm in diameter and the gap size of FPI cavity of 50 µm, measurements find that it has ~20 times improvement in free spectral range (FSR), ~2 times improvement in finesse and ~4 times improvement in contrast of optical transducing signals over a traditional µFPI even without any device performance optimization. Several chemicals have also been evaluated using this device. Fourier transform has been performed on the measured optical signals to facilitate the analysis of the transducing signals.

© 2010 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.6010) Integrated optics : Sensors
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 13, 2010
Revised Manuscript: August 22, 2010
Manuscript Accepted: August 31, 2010
Published: September 8, 2010

Citation
Tianhua Zhang, Zhongcheng Gong, Rebecca Giorno, and Long Que, "A nanostructured Fabry-Perot interferometer," Opt. Express 18, 20282-20288 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005). [CrossRef] [PubMed]
  2. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004). [CrossRef] [PubMed]
  3. C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).
  4. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006). [CrossRef]
  5. I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006). [CrossRef]
  6. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  7. C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994). [CrossRef]
  8. N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002). [CrossRef]
  9. J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999). [CrossRef]
  10. L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels,” US Patent 6,449,410, 2002.
  11. M. Blomberg, O. Rusanen, K. Keranen, and A. Lethto, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems (Transducers’97), 1257–1258 (1997)
  12. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007). [CrossRef]
  13. L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent #7,505,128.
  14. T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer,” Proceedings of IEEE MEMS, 403–406 (2004).
  15. T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope,” Proceedings of IEEE MEMS, 830–833(2005).
  16. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007). [CrossRef] [PubMed]
  17. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005). [CrossRef] [PubMed]
  18. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009). [CrossRef] [PubMed]
  19. T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009).
  20. T. Zhang, S. Talla, Z. Gong, S. Karandikar, R. Giorno, and L. Que, “Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor,” Opt. Express 18(17), 18394–18400 (2010). [CrossRef] [PubMed]
  21. T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313(2009).
  22. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  23. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  24. T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005). [CrossRef]
  25. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited