OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20334–20343

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20334-20343 (2010)
http://dx.doi.org/10.1364/OE.18.020334


View Full Text Article

Enhanced HTML    Acrobat PDF (3758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple and efficient technique for large-area manufacturing of concave microlens arrays (MLAs) on silica glasses with femtosecond (fs)-laser-enhanced chemical wet etching is demonstrated. By means of fs laser in situ irradiations followed by the hydrofluoric acid etching process, large area close-packed rectangular and hexagonal concave MLAs with diameters less than a hundred of micrometers are fabricated within a few hours. The fabricated MLAs exhibit excellent surface quality and uniformity. In contrast to the classic thermal reflow process, the presented technique is a maskless process and allows the flexible control of the size, shape and the packing pattern of the MLAs by adjusting the parameters such as the pulse energy, the number of shots and etching time.

© 2010 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.6030) Materials : Silica
(220.0220) Optical design and fabrication : Optical design and fabrication
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 6, 2010
Revised Manuscript: July 23, 2010
Manuscript Accepted: July 26, 2010
Published: September 9, 2010

Citation
Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou, "Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method," Opt. Express 18, 20334-20343 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20334


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006). [CrossRef] [PubMed]
  2. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007). [CrossRef] [PubMed]
  3. M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002). [CrossRef]
  4. A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006). [CrossRef] [PubMed]
  5. M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002). [CrossRef]
  6. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003). [CrossRef]
  7. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002). [CrossRef]
  8. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994). [CrossRef]
  9. J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000). [CrossRef]
  10. T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17(12), 9733–9747 (2009). [CrossRef] [PubMed]
  11. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, “Two step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16(24), 19541–19549 (2008). [CrossRef] [PubMed]
  12. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996). [CrossRef]
  13. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995). [CrossRef] [PubMed]
  14. M. He, X. Yuan, J. Bu, and W. C. Cheong, “Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique,” Opt. Lett. 29(9), 1007–1009 (2004). [CrossRef] [PubMed]
  15. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006). [CrossRef] [PubMed]
  16. C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008). [CrossRef] [PubMed]
  17. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009). [CrossRef]
  18. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006). [CrossRef] [PubMed]
  19. K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000). [CrossRef]
  20. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009). [CrossRef]
  21. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002). [CrossRef]
  22. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008). [CrossRef] [PubMed]
  23. S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited