OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20350–20359

Infrared lidar overlap function: an experimental determination

Juan Luis Guerrero-Rascado, Maria João Costa, Daniele Bortoli, Ana Maria Silva, Hassan Lyamani, and Lucas Alados-Arboledas  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20350-20359 (2010)
http://dx.doi.org/10.1364/OE.18.020350


View Full Text Article

Enhanced HTML    Acrobat PDF (1918 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

© 2010 OSA

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 28, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: August 13, 2010
Published: September 9, 2010

Citation
Juan Luis Guerrero-Rascado, Maria João Costa, Daniele Bortoli, Ana Maria Silva, Hassan Lyamani, and Lucas Alados-Arboledas, "Infrared lidar overlap function: an experimental determination," Opt. Express 18, 20350-20359 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Halldórsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17(2), 240–244 (1978). [CrossRef] [PubMed]
  2. K. Sassen and G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21(17), 3162–3165 (1982). [CrossRef] [PubMed]
  3. G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, “Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver,” Appl. Opt. 25(17), 2886–2890 (1986). [CrossRef] [PubMed]
  4. H. Kuze, H. Kinjo, Y. Sakurada, and N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37(15), 3128–3132 (1998). [CrossRef]
  5. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005). [CrossRef] [PubMed]
  6. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18(23), 3908–3910 (1979). [CrossRef] [PubMed]
  7. K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28(12), 2194–2195 (1989). [CrossRef] [PubMed]
  8. S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997). [CrossRef]
  9. S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997). [CrossRef]
  10. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41(3), 511–514 (2002). [CrossRef] [PubMed]
  11. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network”. In Laser Remote Sensing of the Atmosphere, A. Dabas, C. Loth, and J. Pelon, eds., selected papers of the 20th International Laser Radar Conference (Edition Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  12. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992). [CrossRef] [PubMed]
  13. F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).
  14. F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.
  15. C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007). [CrossRef]
  16. C. Münkel, and R. Roininen, “Investigation of boundary layer structures with ceilometer using a novel robust algorithm”, Proc. 90th American Meteorological Society Annual Meeting: 15th Symposium on Meteorological Observation and Instrumentation (2010), 5.3.
  17. C. A. Hostetler, Z. Liu, J. Reagan, M. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP Algorithm Theoretical Basis Document”, PC-SCI-201, NASA Langley Res. Cent., Hampton, Va. http://www-calipso.larc.nasa.gov/resources/project_documentation.php (2006).
  18. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972). [CrossRef]
  19. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984). [CrossRef] [PubMed]
  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981). [CrossRef] [PubMed]
  21. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985). [CrossRef] [PubMed]
  22. Y. Sasano and H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23(1), 11–13 (1984). [CrossRef]
  23. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24(22), 3929–3932 (1985). [CrossRef] [PubMed]
  24. L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).
  25. K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008). [CrossRef]
  26. T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:. [CrossRef]
  27. C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987). [CrossRef]
  28. K. Sassen and B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31(11), 1275–1285 (1992). [CrossRef]
  29. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37(12), 2464–2472 (1998). [CrossRef]
  30. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000). [CrossRef]
  31. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41(30), 6470–6476 (2002). [CrossRef] [PubMed]
  32. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41(18), 3685–3699 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited