OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20370–20383

Mid-infrared optical parametric oscillators based on uniform GaP waveguides

Ivan Avrutsky, Richard Soref, and Walter Buchwald  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20370-20383 (2010)
http://dx.doi.org/10.1364/OE.18.020370


View Full Text Article

Enhanced HTML    Acrobat PDF (2478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated chip-scale optical systems are an attractive platform for the implementation of non-linear optical interactions as they promise compact robust devices that operate reliably with lower power consumption compared to analogs based on bulk nonlinear crystals. The use of guided modes to facilitate nonlinear parametric interactions between optical fields, as opposed to bulk beams, has certain implications on optical parametric oscillations, the most important of which are additional methods for achieving phase synchronism and reduced threshold power due to the tight confinement associated with the guided modes. This work presents a theoretical investigation on the use of polarization dependent mode dispersion in guided wave structures as a means to achieve non-linear parametric oscillations from continuous wave sources with outputs in the mid-infrared region of the spectrum. An Al2O3/GaP/Al2O3 waveguide system is investigated and shown to produce parametric oscillations at 3µm to 5µm from 1µm to 2µm input waves utilizing 0.14µm to 0.30µm GaP cores. The threshold power is shown to be 320 × less than that obtainable using more traditional quasi-phase matched bulk crystals over the same wavelength range.

© 2010 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 12, 2010
Revised Manuscript: August 19, 2010
Manuscript Accepted: August 23, 2010
Published: September 9, 2010

Citation
Ivan Avrutsky, Richard Soref, and Walter Buchwald, "Mid-infrared optical parametric oscillators based on uniform GaP waveguides," Opt. Express 18, 20370-20383 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. T. Sorokina, and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, (Springer, 2003).
  2. A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007). [CrossRef]
  3. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002). [CrossRef]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003). [CrossRef]
  5. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31(1), 71–73 (2006). [CrossRef] [PubMed]
  6. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996). [CrossRef] [PubMed]
  7. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002). [CrossRef]
  8. S. Radic, “Parametric amplification and processing in optical fibers,” Laser Photon. Rev. 2(6), 498–513 (2008). [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguide,” Nature Photonics Advance Online Publication, DOI 10:1038/nphoton.2010.119 (2010).
  10. S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nature Photonics Advance Online Publication, DOI 10:1038/nphoton.2010.117 (2010).
  11. R. W. Boyd, Nonlinear Optics, 3rd ed., (Academic Press, 2008).
  12. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391(6666), 463–466 (1998). [CrossRef]
  13. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009). [CrossRef]
  14. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, “Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities,” Opt. Lett. 31(24), 3626–3628 (2006). [CrossRef] [PubMed]
  15. V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure-temperature-gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010). [CrossRef]
  16. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photonics, to be published in August 2010.
  17. R. A. Soref, “Towards silicon-based longwave integrated optoelectronics (LIO),” SPIE Proceedings, 6898, paper 09 (2008).
  18. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal, and quasi-phase-matching techniques,” J. Opt. A 6(6), 569–584 (2004).
  19. D. E. Thompson and P. D. Coleman, “Step-tunable far infrared radiation by phase matched mixing in planar-dielectric waveguides,” IEEE Trans. Microw. Theory Tech. 22(12), 995–1000 (1974). [CrossRef]
  20. H. Ishikawa and T. Kondo, “Birefringent phase matching in thin rectangular high-index-contrast waveguides,” Appl. Phys. Express 2(4), Art. No. 042202 (2009).
  21. J. Seres, “Dispersion of second-order nonlinear optical coefficients,” Appl. Phys. B 73(7), 705–709 (2001). [CrossRef]
  22. M. J. Adams, An Introduction to Optical Waveguides, (Wiley, 1981).
  23. http://refractiveindex.info
  24. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., (Oxford University Press, 2006).
  25. G. D. Boyd and D. A. Kleiman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968). [CrossRef]
  26. R. S. Bennink, “Optimal co-linear Gaussian beams for spontaneous parametric down-conversion,” arXiv:1003.3810v1 [quant-ph] (2010).
  27. W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86(3), 437–441 (2007). [CrossRef]
  28. T. Matsushita, I. Ohta, T. Kondo, “Quasi-phase-matched parametric fluorescence in a periodically inverted GaP waveguide,” Appl. Phys. Express 2(6), Art. No. 061101 (2009).
  29. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15(12), 7479–7488 (2007). [CrossRef] [PubMed]
  30. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15(14), 8770–8780 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited