OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20428–20438

Adiabatic and diabatic process of sum frequency conversion

Ren Liqing, Li Yongfang, Li Baihong, Wang Lei, and Wang Zhaohua  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20428-20438 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field’s energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices
(140.3613) Lasers and laser optics : Lasers, upconversion

ToC Category:
Nonlinear Optics

Original Manuscript: June 24, 2010
Revised Manuscript: July 22, 2010
Manuscript Accepted: July 25, 2010
Published: September 10, 2010

Ren Liqing, Li Yongfang, Li Baihong, Wang Lei, and Wang Zhaohua, "Adiabatic and diabatic process of sum frequency conversion," Opt. Express 18, 20428-20438 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100(18), 183601 (2008). [CrossRef] [PubMed]
  2. M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phasematched second harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30(1), 34–35 (1994). [CrossRef]
  3. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phasematched second-harmonic generation,” IEEE J. Quantum Electron. 30(7), 1596–1604 (1994). [CrossRef]
  4. H. Guo, S. H. Tang, Y. Qin, and Y. Y. Zhu, “Nonlinear frequency conversion with quasi-phase-mismatch effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6), 066615 (2005). [CrossRef] [PubMed]
  5. M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004). [CrossRef] [PubMed]
  6. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22(17), 1341–1343 (1997). [CrossRef] [PubMed]
  7. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17(2), 304–318 (2000). [CrossRef]
  8. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8(2), 180–198 (2007). [CrossRef]
  9. G. Imeshev, M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18(4), 534–539 (2001). [CrossRef]
  10. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phasematching gratings. I. Practical design formulas,” J. Opt. Soc. Am. B 25(4), 463–480 (2008). [CrossRef]
  11. L. D. Allen, and J. H. Eberly, Optical Resonance and Two Level Atoms (Wiley, New York, 1975)
  12. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical Representation of Sum Frequency Generation and Adiabatic Frequency Conversion,” Phys. Rev. A 78(6), 063821 (2008). [CrossRef]
  13. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17(15), 12731–12740 (2009). [CrossRef] [PubMed]
  14. M. Shapiro, and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, New York, 2003)
  15. L. P. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K. Bergmann, “Creation of coherent superpositions using Stark-chirped rapid adiabatic passage,” Opt. Commun. 204(1-6), 413–423 (2002). [CrossRef]
  16. A. Massiah, Quantum Mechanics (North Holland, Amsterdam, 1962), Vol. II.
  17. J. H. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 72(1), 56–59 (1994). [CrossRef] [PubMed]
  18. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127(6), 1918–1939 (1962). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited