OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20475–20490

Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate

Mohammed F. Saleh, Giovanni Di Giuseppe, Bahaa E. A. Saleh, and Malvin Carl Teich  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20475-20490 (2010)
http://dx.doi.org/10.1364/OE.18.020475


View Full Text Article

Enhanced HTML    Acrobat PDF (1187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes. We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO3 photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO3 photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO3.

© 2010 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.7380) Optical devices : Waveguides, channeled
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: July 19, 2010
Revised Manuscript: September 3, 2010
Manuscript Accepted: September 3, 2010
Published: September 10, 2010

Citation
Mohammed F. Saleh, Giovanni Di Giuseppe, Bahaa E. A. Saleh, and Malvin Carl Teich, "Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate," Opt. Express 18, 20475-20490 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Saleh, B. E. A. Saleh, and M. C. Teich, “Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion,” Phys. Rev. A 79, 053842 (2009). [CrossRef]
  2. M. F. Saleh, G. Di Giuseppe, B. E. A. Saleh, and M. C. Teich, “Photonic circuits for generating modal, spectral, and polarization entanglement,” IEEE Photon. J. 2, 736–752 (2010). [CrossRef]
  3. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007). [CrossRef] [PubMed]
  4. M. Avenhaus, M. V. Chekhova, L. A. Krivitsky, G. Leuchs, and C. Silberhorn, “Experimental verification of high spectral entanglement for pulsed waveguided spontaneous parametric down-conversion,” Phys. Rev. A 79, 043836 (2009). [CrossRef]
  5. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009). [CrossRef]
  6. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17, 12019–12030 (2009).
  7. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009). [CrossRef]
  8. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef] [PubMed]
  9. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009). [CrossRef]
  10. C. H. Bennett, and P. W. Shor, “Quantum information theory,” IEEE Trans. Inf. Theory 44, 2724–2742 (1998). [CrossRef]
  11. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  12. J. L. O’Brien, A. Furusawa, and J. Vuˇckovi’c, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]
  13. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009). [CrossRef]
  14. G. Cincotti, “Prospects on planar quantum computing,” J. Lightwave Technol. 27, 5755–5766 (2009). [CrossRef]
  15. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464, 45–53 (2010). [CrossRef] [PubMed]
  16. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw–Hill, 1989).
  17. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  18. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004). [CrossRef]
  19. Y. L. Lee, C. Jung, Y.-C. Noh, M. Park, C. Byeon, D.-K. Ko, and J. Lee, “Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides,” Opt. Express 12, 2649–2655 (2004). [CrossRef] [PubMed]
  20. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001). [CrossRef]
  21. H. Guillet de Chatellus, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, and G. Di Giuseppe, “Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in PPLN,” Opt. Express 14, 10060–10072 (2006).
  22. R. C. Alferness, and R. V. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978). [CrossRef]
  23. R. C. Alferness, “Efficient waveguide electro-optic TETM mode converter/wavelength filter,” Appl. Phys. Lett. 36, 513–515 (1980). [CrossRef]
  24. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D Appl. Phys. 36, R1–R16 (2003). [CrossRef]
  25. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007). [CrossRef]
  26. D. Runde, S. Breuer, and D. Kip, “Mode-selective coupler for wavelength multiplexing using LiNbO3:Ti optical waveguides,” Cent. Eur. J. Phys. 6, 588–592 (2008). [CrossRef]
  27. R. V. Schmidt, and H. Kogelnik, “Electro-optically switched coupler with stepped Db reversal using Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 28, 503–506 (1976). [CrossRef]
  28. H. Kogelnik, and R. V. Schmidt, “Switched directional couplers with alternating Db,” IEEE J. Quantum Electron. 12, 396–401 (1976). [CrossRef]
  29. D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995). [CrossRef] [PubMed]
  30. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef] [PubMed]
  31. M. Fiorentino and F. N. C. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070 502 (2004). [CrossRef]
  32. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070 501 (2010). [CrossRef]
  33. S. Glancy, H. M. Vasconcelos, and T. C. Ralph, “Transmission of optical coherent-state qubits,” Phys. Rev. A 70, 022 317 (2004). [CrossRef]
  34. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  35. K. K. Wong, ed., Properties of Lithium Niobate (Institution of Electrical Engineers, 2002).
  36. M. D. Feit, J. A. Fleck, Jr., and L. McCaughan, “Comparison of calculated and measured performance of diffused channel-waveguide couplers,” J. Opt. Soc. Am. 73, 1296–1304 (1983). [CrossRef]
  37. S. K. Korotky, and R. C. Alferness, “Ti:LiNbO3 integrated optic technology,” in Integrated Optical Circuits and Components: Design and Applications, L. D. Hutcheson, ed. (Marcel Dekker, 1987).
  38. G. B. Hocker, and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977). [CrossRef] [PubMed]
  39. C. H. Bennett, and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of the International Conference on Computers, Systems & Signal Processing, pp. 175–179 (Institute of Electrical and Electronics Engineers, 1984).
  40. A. F. Abouraddy, T. Yarnall, B. E. A. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052 114 (2007). [CrossRef]
  41. T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Synthesis and analysis of entangled photonic qubits in spatial-parity space,” Phys. Rev. Lett. 99, 250 502 (2007). [CrossRef]
  42. T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich, “Experimental violation of Bell’s inequality in spatial-parity space,” Phys. Rev. Lett. 99, 170 408 (2007). [CrossRef]
  43. B. E. A. Saleh, and M. C. Teich, “Sub-Poisson light generation by selective deletion from cascaded atomic emissions,” Opt. Commun. 52, 429–432 (1985). [CrossRef]
  44. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  45. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Degree of entanglement for two qubits,” Phys. Rev. A 64, 050 101 (2001). [CrossRef]
  46. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn,, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133 601 (2008). [CrossRef]
  47. Z. H. Levine, J. Fan, J. Chen, A. Ling, and A. Migdall, “Heralded, pure-state single-photon source based on a Potassium Titanyl Phosphate waveguide,” Opt. Express 18, 3708–3718 (2010). [CrossRef] [PubMed]
  48. W. P. Grice, A. B. U’Ren, and I. A.Walmsley, “Eliminating frequency and space–time correlations in multiphoton states,” Phys. Rev. A 64, 063 815 (2001). [CrossRef]
  49. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053 810 (2003). [CrossRef]
  50. Z. D. Walton, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Generation of polarization-entangled photon pairs with arbitrary joint spectrum,” Phys. Rev. A 70, 052 317 (2004). [CrossRef]
  51. S. Carrasco, J. P. Torres, L. Torner, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Spatial-to-spectral mapping in spontaneous parametric down-conversion,” Phys. Rev. A 70, 043 817 (2004). [CrossRef]
  52. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  53. L. L. Buhl, and R. C. Alferness, “Ti:LiNbO3 waveguide electro-optic beam combiner,” Opt. Lett. 12, 778–780 (1987). [CrossRef] [PubMed]
  54. Y. Mitsumori, J. A. Vaccaro, S. M. Barnett, E. Andersson, A. Hasegawa, M. Takeoka, and M. Sasaki, “Experimental demonstration of quantum source coding,” Phys. Rev. Lett. 91, 217 902 (2003). [CrossRef]
  55. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  56. A. Djupsjobacka, and B. Lagerstrom, “Stabilization of a Ti:LiNbO3 directional coupler,” Appl. Opt. 28, 2205–2206 (1989). [CrossRef] [PubMed]
  57. F. Lucchi, D. Janner, M. Belmonte, S. Balsamo, M. Villa, S. Giurgola, P. Vergani, and V. Pruneri, “Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator,” Opt. Express 15, 10 739–10 743 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited