OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1085–1090

Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials

D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1085-1090 (2010)
http://dx.doi.org/10.1364/OE.18.001085


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared metamaterials fabricated on semiconductor substrates exhibit a high degree of sensitivity to very thin (as small as 2 nm) layers of low permittivity materials between the metallic elements and the underlying substrate. We have measured the resonant frequencies of split ring resonators and square loops fabricated on Si wafers with silicon dioxide thicknesses ranging from 0 to 10 nm. Resonance features blue shift with increasing silicon dioxide thickness. These effects are explained by the silicon dioxide layer forming a series capacitance to the fringing field across the elements. Resonance coupling to the Si-O vibrational absorption has been observed. Native oxide layers which are normally ignored in numerical simulations of metamaterials must be accounted for to produce accurate predictions.

© 2010 OSA

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 20, 2009
Revised Manuscript: December 22, 2009
Manuscript Accepted: December 23, 2009
Published: January 7, 2010

Citation
D. J. Shelton, D. W. Peters, M. B. Sinclair, I. Brener, L. K. Warne, L. I. Basilio, K. R. Coffey, and G. D. Boreman, "Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials," Opt. Express 18, 1085-1090 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Shelton, J. Ginn, and G. Boreman, “Bandwidth variations in conformal infrared frequency selective surfaces,” IEEE Antennas Propag. International Symposium, 3976 (2007)
  2. D. H. Kwon, X. Wang, Z. Bayraktar, B. Weiner, and D. H. Werner, “Near-infrared metamaterial films with reconfigurable transmissive/reflective properties,” Opt. Lett. 33(6), 545–547 (2008). [CrossRef] [PubMed]
  3. B. Kanté, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009). [CrossRef]
  4. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009). [CrossRef]
  5. B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005). [CrossRef]
  6. J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007). [CrossRef]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  8. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008). [CrossRef] [PubMed]
  9. J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007). [CrossRef]
  10. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]
  11. B. Kanté, A. de Lustrac, J. M. Lourtioz, and F. Gadot, “Engineering resonances in infrared metamaterials,” Opt. Express 16(10), 6774–6784 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-6774 . [CrossRef] [PubMed]
  12. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef] [PubMed]
  13. D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007). [CrossRef]
  14. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995). [CrossRef]
  15. N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000). [CrossRef]
  16. D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811 (1981). [CrossRef]
  18. Ansoft HFSS software, http://www.ansoft.com/products/hf/hfss/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited