OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1105–1112

Effect of aging on optical properties of bimetallic sensor chips

X. Chen and K. Jiang  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1105-1112 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bimetallic sliver/gold sensor chips are attractive since they combine the advantages of both silver and gold layers. Optical properties of the bimetallic sensor chips show significant aging effects. Surface plasmon resonance (SPR) curves were produced on an SPR device and the time dependence of aging on SPR curves was studied. The results show that resonance angle and full width at half maximum (FWHM) of response curves increase with the aging time after film deposition. The performance of the sensor chips in terms of intrinsic sensitivity (IS) degrades with aging time. The underlying mechanism of the aging effect is explained as the growth of a silver oxide layer between gold and silver during the aging process.

© 2010 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: December 1, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 11, 2009
Published: January 8, 2010

X. Chen and K. Jiang, "Effect of aging on optical properties of bimetallic sensor chips," Opt. Express 18, 1105-1112 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Hwang, "Glycobiology: Surface sensing," Nature 457, 618 (2009). [CrossRef]
  2. Z. Salamon, H. A. Macleod, and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems," Biochim. Biophys. Acta. 1331, 131-152 (1997). [PubMed]
  3. M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, "Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times," Anal. Chem. 73, 2828-2835 (2001). [CrossRef] [PubMed]
  4. K. Kurihara and K. Suzuki, "Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory," Anal. Chem. 74, 696-701(2002). [CrossRef] [PubMed]
  5. F.-C. Chien and S. -J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosens. Bioelectron. 20, 633-642 (2004). [CrossRef] [PubMed]
  6. Y. Sun and Y. Xia, "Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes," Anal. Chem. 74, 5297-5305 (2002). [CrossRef] [PubMed]
  7. R. Jha and A. K. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared," Opt. Lett. 34, 749-751(2009). [CrossRef] [PubMed]
  8. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227-237 (1996). [CrossRef]
  9. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay," Nano Lett. 4, 1029-1034 (2004). [CrossRef]
  10. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, "Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance," Sensors 2, 62-70 (2002). [CrossRef]
  11. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 114, 1028-1034 (2006). [CrossRef]
  12. B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang and S. C. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide," Lab Chip 7,506-512 (2007). [CrossRef] [PubMed]
  13. Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu and Q. Y. Lin, "Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles," Appl. Phys. Lett. 91, 141108 (2007). [CrossRef]
  14. B. D. Gupta and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40-46 (2005). [CrossRef]
  15. A. Arce, A. Arce Jr., and A. Soto, "Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K," Thermochimica Acta 435, 197-201(2005). [CrossRef]
  16. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, "Temperature dependence of the optical properties of Au, Ag and Cu," J. Phys. F 6, 1583-606 (1976). [CrossRef]
  17. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9, 5056-5070 (1974). [CrossRef]
  18. J. C. Maxwell Garnett, "Colours in Metal Glasses and in Metallic Films," Phil. Trans. R. Soc. 203, 385-420 (1904). [CrossRef]
  19. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, "Gold nanoparticle thin films," Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119-126 (2002). [CrossRef]
  20. L. Genzel, T. P. Martin, "Infrared Absorption in Small Ionic Crystals," Phys. Stat. Sol. B 51, 91-99 (1972). [CrossRef]
  21. Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi and J. Tominaga, "Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film," Nanotechnology 17, 1717-1721 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited