OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1134–1143

Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view

Xin Wei and Larry Thibos  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1134-1143 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Peripheral vision and off-axis aberrations not only play an important role in daily visual tasks but may also influence eye growth and refractive development. Thus it is important to measure off-axis wavefront aberrations of human eyes objectively. To achieve efficient measurement, we incorporated a double-pass scanning system with a Shack Hartmann wavefront sensor (SHWS) to develop a scanning Shack Hartmann aberrometer (SSHA). The prototype SSHA successfully measured the off-axis wavefront aberrations over +/− 15 degree visual field within 7 seconds. In two validation experiments with a wide angle model eye, it measured change in defocus aberration accurately (<0.02μm, 4mm pupil) and precisely (<0.03μm, 4mm pupil). A preliminary experiment with a human subject suggests its feasibility in clinical applications.

© 2010 OSA

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: October 26, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: December 23, 2009
Published: January 8, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Xin Wei and Larry Thibos, "Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view," Opt. Express 18, 1134-1143 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008). [CrossRef] [PubMed]
  2. B. Lachenmayr, “[Visual field and road traffic. How does peripheral vision function?],” Ophthalmologe 103(5), 373–381 (2006). [CrossRef]
  3. K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005). [CrossRef] [PubMed]
  4. L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987). [CrossRef] [PubMed]
  5. L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987). [CrossRef] [PubMed]
  6. Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996). [PubMed]
  7. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997). [PubMed]
  8. W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990). [CrossRef] [PubMed]
  9. S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997). [CrossRef] [PubMed]
  10. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004). [CrossRef] [PubMed]
  11. E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005). [CrossRef] [PubMed]
  12. E. L. Smith, J. Huang, L. F. Hung, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Hemi-Retinal Form Deprivation: Evidence for Local Control of Eye Growth and Refractive Development in Infant Monkeys,” Invest. Ophthalmol. Vis. Sci. (2009).
  13. JJ. Liang*, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949 (1994). [CrossRef]
  14. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007). [CrossRef]
  15. D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003). [CrossRef]
  16. L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005). [CrossRef] [PubMed]
  17. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008). [CrossRef] [PubMed]
  18. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004). [CrossRef]
  19. T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998). [CrossRef]
  20. F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004). [CrossRef]
  21. P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008). [CrossRef] [PubMed]
  22. X. Wei, and L. N. Thibos, “Scanning Hartmann Shack wavefront sensor to measure off-axis wavefront aberrations,” US Patent Application No. 61/092,096 (Aug 2008).
  23. Zemax User Guide (Zemax Development Corporation, 2006).
  24. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999). [CrossRef]
  25. D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002). [CrossRef]
  26. X. Wei and L. N. Thibos, “Modal estimation of wavefront aberrations over elliptical pupils from wavefront gradients”. Optom. Vis. Sci., Submitted for publication.
  27. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995). [CrossRef] [PubMed]
  28. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003). [CrossRef] [PubMed]
  29. ANSI, “American National Standard for Safe Use of Lasers,” in ANSI Z136.1, A. N. S. Institute, ed. (2007).
  30. F. Zhou, “Combined Corneal Lenticular Tomporapher and Aberrometer Based on Shack-Hartmann Wavefront Sensing Technology,” in School of Optometry(Indiana University, Bloomington, 2004), pp. 103 - 104. http://bert.lib.indiana.edu:2072/dissertations/fullcit/3162275
  31. R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004). [CrossRef] [PubMed]
  32. R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005). [CrossRef] [PubMed]
  33. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951–953 (1999). [CrossRef]
  34. A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(26), 207–217 (1999). [CrossRef] [PubMed]
  35. X. Wei, T. Van Heugten, and L. Thibos, “Validation of a Hartmann-Moiré wavefront sensor with large dynamic range,” Opt. Express 17(16), 14180–14185 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited