OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1144–1150

Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers

R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1144-1150 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luminescent SiN-based multilayers were prepared in a plasma enhanced chemical vapor deposition system followed by subsequently laser crystallization of ultrathin amorphous Si-rich SiN sublayers. The cross-sectional TEM analysis reveals that grain size of Si nanocrystals embedded in the Si-rich SiN sublayers is independent of the laser fluence, while the grain density can be well controlled by the laser fluence. The devices containing the laser crystallized multilayers show a low turn-on voltage of 5 V and exhibit strong green light emission under both optical and electrical excitations. Moreover, the device after laser-irradiated at 554 mJ/cm2 shows a significantly enhanced EL intensity as well as external quantum efficiency compared with the device without laser irradiation. The EL mechanism is suggested from the bipolar recombination of electron-hole pairs at Si nanocrystals. The improved performance of the devices was discussed.

© 2010 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.4170) Optical devices : Multilayers

ToC Category:
Optical Devices

Original Manuscript: October 14, 2009
Revised Manuscript: November 27, 2009
Manuscript Accepted: November 30, 2009
Published: January 8, 2010

R. Huang, D. Q. Wang, H. L. Ding, X. Wang, K. J. Chen, J. Xu, Y. Q. Guo, J. Song, and Z. Y. Ma, "Enhanced electroluminescence from SiN-based multilayer structure by laser crystallization of ultrathin amorphous Si-rich SiN layers," Opt. Express 18, 1144-1150 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003). [CrossRef]
  2. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  4. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001). [CrossRef] [PubMed]
  5. M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003). [CrossRef]
  6. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000). [CrossRef] [PubMed]
  7. G. R. Lin, C. J. Lin, and C. K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007). [CrossRef] [PubMed]
  8. Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003). [CrossRef]
  9. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006). [CrossRef]
  10. C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006). [CrossRef]
  11. R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007). [CrossRef]
  12. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008). [CrossRef]
  13. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009). [CrossRef]
  14. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999). [CrossRef]
  15. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008). [CrossRef]
  16. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009). [CrossRef]
  17. T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999). [CrossRef]
  18. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996). [CrossRef]
  19. T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004). [CrossRef]
  20. M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999). [CrossRef]
  21. J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009). [CrossRef] [PubMed]
  22. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).
  23. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008). [CrossRef]
  24. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited