OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1217–1233

Remote preparation of complex spatial states of single photons and verification by two-photon coincidence experiment

Yoonshik Kang, Kiyoung Cho, Jaewoo Noh, Dashiell L. P. Vitullo, Cody Leary, and M. G. Raymer  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1217-1233 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and provide experimental evidence in support of a theory for the remote preparation of a complex spatial state of a single photon. An entangled two-photon source was obtained by spontaneous parametric down-conversion, and a double slit was placed in the path of the signal photon as a scattering object. The signal photon was detected after proper spatial filtering so that the idler photon was prepared in the corresponding single-photon state. By using a two-photon coincidence measurement, we obtained the Radon transform, at several longitudinal distances, of the single-photon Wigner distribution function modified by the double slit. The experimental results are consistent with the idler photon being in a pure state. An inverse Radon transformation can, in principle, be applied to the measured data to reconstruct the modified single-photon Wigner function, which is a complete representation of the amplitude and phase structure of the scattering object.

© 2010 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 14, 2009
Revised Manuscript: November 29, 2009
Manuscript Accepted: December 22, 2009
Published: January 11, 2010

Yoonshik Kang, Kiyoung Cho, Jaewoo Noh, Dashiell L. P. Vitullo, Cody Leary, and M. G. Raymer, "Remote preparation of complex spatial states of single photons and verification by two-photon coincidence experiment," Opt. Express 18, 1217-1233 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007). [CrossRef]
  3. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246(4-6), 545–550 (2005). [CrossRef]
  4. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum States,” Phys. Rev. Lett. 100(13), 133601 (2008). [CrossRef] [PubMed]
  5. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric down-conversion: A recipe for purity,” N. J. Phys. 10(9), 093011 (2008). [CrossRef]
  6. M. G. Raymer, “Measuring the quantum mechanical wave function,” Contemp. Phys. 38(5), 343–355 (1997). [CrossRef]
  7. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81(1), 299–332 (2009). [CrossRef]
  8. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87(5), 050402 (2001). [CrossRef] [PubMed]
  9. B. J. Smith, B. Killett, M. G. Raymer, I. A. Walmsley, and K. Banaszek, “Measurement of the transverse spatial quantum state of light at the single-photon level,” Opt. Lett. 30(24), 3365–3367 (2005). [CrossRef]
  10. W. Wasilewski, P. Kolenderski, and R. Frankowski, “Spectral density matrix of a single photon measured,” Phys. Rev. Lett. 99(12), 123601 (2007). [CrossRef] [PubMed]
  11. T. Aichele, A. I. Lvovsky, and S. Schiller, “Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state,” Eur. Phys. J. D 18(2), 237–245 (2002). [CrossRef]
  12. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995). [CrossRef] [PubMed]
  13. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995). [CrossRef] [PubMed]
  14. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” Coincidence Imaging with a Classical Source,” Phys. Rev. Lett. 89(11), 113601 (2002). [CrossRef] [PubMed]
  15. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87(12), 123602 (2001). [CrossRef] [PubMed]
  16. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Entangled-photon Fourier optics,” J. Opt. Soc. Am. B 19(5), 1174–1184 (2002). [CrossRef]
  17. A. Gatti, E. Brambilla, and L. A. Lugiato, “Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm,” Phys. Rev. Lett. 90(13), 133603 (2003). [CrossRef] [PubMed]
  18. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004). [CrossRef] [PubMed]
  19. M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004). [CrossRef] [PubMed]
  20. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008). [CrossRef]
  21. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005). [CrossRef] [PubMed]
  22. Y. Cai and S. Zhu, “Coincidence fractional Fourier transform implemented with partially coherent light radiation,” J. Opt. Soc. Am. A 22(9), 1798–1804 (2005). [CrossRef]
  23. F. Wang, Y. Cai, and S. He, “Experimental observation of coincidence fractional Fourier transform with a partially coherent beam,” Opt. Express 14(16), 6999–7004 (2006). [CrossRef] [PubMed]
  24. B. Erkmen and J. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79(2), 023833 (2009). [CrossRef]
  25. S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 1045–1052 (2009). [CrossRef]
  26. H. M. Ozaktas and D. Mendlovic, “Fractional Fourier Optics,” J. Opt. Soc. Am. A 12(4), 743–751 (1995). [CrossRef]
  27. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10(10), 2181–2186 (1993). [CrossRef]
  28. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72(8), 1137–1140 (1994). [CrossRef] [PubMed]
  29. M. G. Raymer, M. Beck, and D. F. McAlister, “Spatial and temporal optical field reconstruction using phase-space tomography,” in Quantum Optics VI, D. F. Walls and J. D. Harvey, eds. (Springer, 1994).
  30. T. Alieva, and M. J. Bastiaans, “Wigner distribution and fractional Fourier transform,” Signal Processing and its Applications, Sixth International Symposium on 2001, 1, 168–169 (2001).
  31. D. F. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20(10), 1181–1183 (1995). [CrossRef] [PubMed]
  32. T. Anhut, B. Karamata, T. Lasser, M. G. Raymer, and L. Wenke, “Measurement of scattered light Wigner functions by phase space tomography and implications for parallel OCT,” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII. Edited by Tuchin, Valery V.; Izatt, Joseph A.; Fujimoto, James G. Proceedings of the SPIE, Volume 4956, 120–128 (2003).
  33. B. Eppich and N. Reng, “Measurement of the Wigner distribution function based on the inverse Radon transformation,” Proc. SPIE 2375, 261–268 (1995). [CrossRef]
  34. T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53(4), 2804–2815 (1996). [CrossRef] [PubMed]
  35. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, 1988).
  36. M. Born, and E. Wolf, Principles of Optics, 6th Ed. (Cambridge University Press, 1993).
  37. Z. Zalevsky and D. Mendlovi, “Fractional Radon transform: definition,” Appl. Opt. 35(23), 4628–4631 (1996). [CrossRef] [PubMed]
  38. U. Leonhardt and M. Munroe, “Number of phases required to determine a quantum state in optical homodyne tomography,” Phys. Rev. A 54(4), 3682–3684 (1996). [CrossRef] [PubMed]
  39. A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality be considered complete?” Phys. Rev. 47(10), 777–780 (1935). [CrossRef]
  40. C. Monken, P. Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A 57(4), 3123–3126 (1998). [CrossRef]
  41. D. S. Tasca, S. P. Walborn, P. H. Souto Ribeiro, and F. Toscano, “Detection of transverse entanglement in phase space,” Phys. Rev. A 78(1), 010304 (2008). [CrossRef]
  42. D. Tasca, S. Walborn, P. Souto Ribeiro, F. Toscano, and P. Pellat-Finet, “Propagation of transverse intensity correlations of a two-photon state,” Phys. Rev. A 79(3), 033801 (2009). [CrossRef]
  43. P. Navez and E. Brambilla, “Spatial entanglement of twin quantum images,” Phys. Rev. A 65, 013813 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited