OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1289–1295

Improvement of THz coupling using a tapered parallel-plate waveguide

Sang-Hoon Kim, Eui Su Lee, Young Bin Ji, and Tae-In Jeon  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1289-1295 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (278 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports an experimental and simulation study of a tapered parallel-plate waveguide (TPPWG) to improve THz coupling to the plate separation gap. The flat- and round-type TPPWG without any silicon lens is compared to the parallel-plate waveguide (PPWG) with a plano-cylindrical silicon lens. The spectrum amplitudes of the input-side TPPWG and the input- and output-side TPPWG both having a 3° slop angle increased about 56% and 103% at 1 THz when compared to that of the PPWG. Since the input- and output-side TPPWG had almost no impedance mismatch to the propagating THz wave, coupling to the waveguide could be improved twice compared with the PPWG.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(350.5500) Other areas of optics : Propagation
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Integrated Optics

Original Manuscript: December 10, 2009
Revised Manuscript: December 31, 2009
Manuscript Accepted: January 4, 2010
Published: January 11, 2010

Sang-Hoon Kim, Eui Su Lee, Young Bin Ji, and Tae-In Jeon, "Improvement of THz coupling using a tapered parallel-plate waveguide," Opt. Express 18, 1289-1295 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999). [CrossRef]
  2. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  3. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000). [CrossRef]
  4. D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1122–1135 (2000). [CrossRef]
  5. T. Akalin, A. Teizebré, and B. Bocquet, “Single-wire transmission lines at terahertz frequencies,” IEEE Trans. Microw. Theory Tech. 54(6), 2762–2767 (2006). [CrossRef]
  6. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  8. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of subps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett. 85(25), 6092–6094 (2004). [CrossRef]
  9. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  10. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave and Wireless Components Lett. 11(11), 444–446 (2001). [CrossRef]
  11. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008). [CrossRef]
  12. S. S. Harsha, N. Laman, and D. Grischkowsky, “High Q terahertz bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009). [CrossRef]
  13. T. Prasad, V. L. Colvin, Z. Jian, and D. M. Mittleman, “Superprism effect in a metal-clad terahertz photonic crystal slab,” Opt. Lett. 32(6), 683–685 (2007). [CrossRef] [PubMed]
  14. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T.-I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express 17(11), 9212–9218 (2009). [CrossRef] [PubMed]
  15. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009). [CrossRef]
  16. K. Matsumaru, “Reflection coefficient of E-plane tapered waveguides,” IRE Trans. Microwave Theor. Tech. 6(2), 143–149 (1958). [CrossRef]
  17. H. G. Unger, “Circular waveguide taper of improved design,” Bell Syst. Tech. J. 37, 899–912 (1958).
  18. S. Panknin, A. K. Hartmann, and T. Salditt, “X-ray propagation in tapered waveguides: Simulation and optimization,” Opt. Commun. 281(10), 2779–2783 (2008). [CrossRef]
  19. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16(23), 18576–18589 (2008). [CrossRef]
  20. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J. F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic- horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008). [CrossRef]
  21. J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009). [CrossRef] [PubMed]
  22. J. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86(6), 061109 (2005). [CrossRef]
  23. N. Marcuvitz, Waveguide Handbook (Peregrinus, London, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited