OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1296–1301

Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode

Xiao Wei Sun, Jing Chen, Jun Ling Song, De Wei Zhao, Wei Qiao Deng, and Wei Lei  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1296-1301 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a quantum dot sensitized solar cell (QDSSC) with a thioglycolic acid (TGA) capped CdSe quantum dot (QD) sensitized ZnO nanorod photoanode. As revealed by UV-Vis absorption spectrum and transmission electron microscopy, the quantum dots can be effectively adsorbed onto ZnO nanorods. By studying the emission decay, the quenching of the CdSe QDs by ZnO nanorod was verified, and an electron transfer (from QD to ZnO) rate constant of 1 x 108 s−1 was obtained. The efficiency of the as-prepared QDSSC was 0.66% and an incident power conversion efficiency of 22% at 400 nm was achieved.

© 2010 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

Original Manuscript: December 10, 2009
Revised Manuscript: December 26, 2009
Manuscript Accepted: December 26, 2009
Published: January 11, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Xiao Wei Sun, Jing Chen, Jun Ling Song, De Wei Zhao, Wei Qiao Deng, and Wei Lei, "Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode," Opt. Express 18, 1296-1301 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation,” Phys. Status Solidi B. 71(2), 547–556 (1975). [CrossRef]
  2. C. X. Xu, X. W. Sun, S. N. Fang, X. H. Yang, M. B. Yu, G. P. Zhu, and Y. P. Cui, “Electrochemically deposited zinc oxide arrays for field emission,” Appl. Phys. Lett. 88(16), 161921 (2006). [CrossRef]
  3. Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, and K. L. Teo, “A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation,” Appl. Phys. Lett. 93(25), 253107 (2008). [CrossRef]
  4. J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, “Zinc oxide nanocomb biosensor for glucose detection,” Appl. Phys. Lett. 88(23), 233106 (2006). [CrossRef]
  5. X. W. Sun and J. X. Wang, “Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode,” Nano Lett. 8(7), 1884–1889 (2008). [CrossRef] [PubMed]
  6. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007). [CrossRef]
  7. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, “An oleic acid-capped CdSe quantum-dot sensitized solar cell,” Appl. Phys. Lett. 94(15), 153115 (2009). [CrossRef]
  8. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007). [CrossRef] [PubMed]
  9. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  10. Y. Zhang, T. F. Xie, T. F. Jiang, X. Wei, S. Pang, X. Wang, and D. Wang, “Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices,” Nanotechnology 20(15), 155707 (2009). [CrossRef] [PubMed]
  11. B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, “Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces,” J. Phys. Chem. C 112(22), 8419–8423 (2008). [CrossRef]
  12. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc. 130(12), 4007–4015 (2008). [CrossRef] [PubMed]
  13. D. R. James, Y. S. Liu, P. Demayo, and W. R. Ware, “DISTRIBUTIONS OF FLUORESCENCE LIFETIMES - CONSEQUENCES FOR THE PHOTOPHYSICS OF MOLECULES ADSORBED ON SURFACES,” Chem. Phys. Lett. 120(4–5), 460–465 (1985). [CrossRef]
  14. I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129(14), 4136- + (2007).
  15. S. Pang, T. F. Xie, Y. Zhang, X. Wei, M. Yang, D. J. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C 111(49), 18417–18422 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited