OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1349–1357

Nonlinear optical properties of nanocrystalline diamond

F. Trojánek, K. Žídek, B. Dzurňák, M. Kozák, and P. Malý  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1349-1357 (2010)
http://dx.doi.org/10.1364/OE.18.001349


View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on investigation of nonlinear optical phenomena in nanocrystalline diamond prepared by microwave plasma enhanced chemical vapour deposition. We observed the upconverted photoluminescence, the second and the third harmonic generation and Z-scan signal. The value of the third order nonlinear susceptibility was estimated. Our results show that nonlinear optical properties of nanocrystalline diamond have many features of the bulk diamond affected to some extent by the presence of grain boundaries.

© 2010 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.3270) Nonlinear optics : Kerr effect
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 4, 2009
Revised Manuscript: January 5, 2010
Manuscript Accepted: January 5, 2010
Published: January 12, 2010

Citation
F. Trojánek, K. Žídek, B. Dzurňák, M. Kozák, and P. Malý, "Nonlinear optical properties of nanocrystalline diamond," Opt. Express 18, 1349-1357 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, and C. E. Nebel, “Surface electronic properties of H-terminated diamond in contact with adsorbates and electrolytes,” Phys. Status Solidi 203(13), 3273–3298 (2006) (a). [CrossRef]
  2. K. K. Liu, C. L. Cheng, C. C. Chang, and J. I. Chao, “Biocompatible and detectable carboxylated nanodiamond on human cell,” Nanotechnology 18(32), 325102 (2007). [CrossRef]
  3. W. Yang and R. J. Hamers, “Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film,” Appl. Phys. Lett. 85(16), 3626–3628 (2004). [CrossRef]
  4. A. Kriele, O. A. Williams, M. Wolfer, D. Brink, W. Mueller-Sebert, and C. E. Nebel, “Tuneable optical lenses from diamond thin films,” Appl. Phys. Lett. 95(3), 031905 (2009). [CrossRef]
  5. C. E. Nebel, B. Rezek, D. Shin, H. Uetsuka, and N. Yang, “Diamond for bio-sensor applications,” J. Phys. D Appl. Phys. 40(20), 6443–6466 (2007). [CrossRef]
  6. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64(6), 061802 (2001). [CrossRef]
  7. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Coherence of an optically illuminated single nuclear spin qubit,” Science 316, 1312–1316 (2007).
  8. S. Koizumi, C. E. Nebel, and M. Nesladek, Physics and Applications of CVD Diamond, (Wiley-VCH, 2008).
  9. M. Buck and Th. Schaich, “Optical 2nd-harmonic generation on the diamond C(111) surface,” Diamond Related Materials 4(4), 544–547 (1995). [CrossRef]
  10. V. I. Gavrilenko and F. Rebentrost, “Nonlinear optical susceptibility of the surfaces of silicon and diamond,” Surf. Sci. 331–333, 1355–1360 (1995). [CrossRef]
  11. H. Seki, T. Yamada, T. J. Chuang, R. P. Chin, J. Y. Huang,, and Y. R. Shen, “Investigation of diamond C(111) (2 × 1) surface exposed to hydrogen and hydrocarbon species using second-harmonic generation and sum frequency generation,” Diamond Related Materials 2(2-4), 567–572 (1993). [CrossRef]
  12. R. Schliesing, G. Eichhorn, X. Jiang, and H. Zacharias, “The Complex Tensor Components of the Nonlinear Susceptibility x(2) of C (100) and of the C/Si (100) Interface,” Surf. Sci. 387(1-3), 279–287 (1997). [CrossRef]
  13. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10(10), 4447–4463 (1974). [CrossRef]
  14. C. K. Lin, Y. H. Wang, H. C. Chang, M. Hayashi, and S. H. Lin, “One- and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study,” J. Chem. Phys. 129(12), 124714 (2008). [CrossRef] [PubMed]
  15. T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H.-C. Chang, W. Fann, J.-H. Hsu, K.-M. Chen, and Y.-C. Yu, “Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond,” J. Phys. Chem. A 111(38), 9379–9386 (2007). [CrossRef] [PubMed]
  16. M. D. Sastry, M. Gaonkar, S. Mane, S. Athavale, K. V. R. Murthy, S. Desai, H. Bagla, J. Panjikar, and K. T. Ramchandran, “Non-linear optical properties of coloured diamonds: Observations of frequency up conversion and “whispering gallery-like” modes in photoluminescence,” Diamond Related Materials 17(7-10), 1288–1291 (2008). [CrossRef]
  17. S. Preuss and M. Stuke, “Subpicosecond ultraviolet aser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67(3), 338–340 (1995). [CrossRef]
  18. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499–501 (1991). [CrossRef] [PubMed]
  19. Yu. D. Glinka, K.-W. Lin, H.-C. Chang, and S. H. Lin, “Multiphoton-excited luminescence from diamond nanoparticles,” J. Phys. Chem. B 103(21), 4251–4263 (1999). [CrossRef]
  20. S. Potocky, A. Kromka, J. Potmesil, Z. Remes, Z. Polackova, and M. Vanecek, “Growth of nanocrystalline diamond films deposited by microwave plasma CVD system at low substrate temperatures,” Phys. Status Solidi 203(12), 3011–3015 (2006) (a). [CrossRef]
  21. V. Mortet, J. D’Haen, J. Potmesil, R. Kravets, I. Drbohlav, V. Vorlicek, J. Rosa, and M. Vanecek, “Thin nanodiamond membranes and their micro structural, optical and photoelectrical properties,” Diamond Related Materials 14(3-7), 393–397 (2005). [CrossRef]
  22. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  23. O. Madelung, M. Schulz, and H. Weiss, (Eds), Landolt-Bornstein, series III, vol. 22, (Springer-Verlag, 1987).
  24. S. S. Zuo, M. K. Yaran, T. A. Grotjohn, D. K. Reinhard, and J. Asmussen, “Investigation of diamond deposition uniformity and quality for freestanding film and substrate applications,” Diamond Related Materials 17(3), 300–305 (2008). [CrossRef]
  25. C. E. Nebel, “Electronic properties of CVD diamond,” Semicond. Sci. Technol. 18(3), S1–S11 (2003). [CrossRef]
  26. D. G. Kim, T. Y. Seong, Y. J. Baik, M. A. Stevens Kalceff, and M. R. Phillips, “Cathodoluminescence of diamond films grown on pretreated Si(001) substrates by microwave plasma chemical vapour deposition,” Diamond Related Materials 8(2-5), 712–716 (1999). [CrossRef]
  27. A. Hoffman, M. Petrovic, G. Comtet, A. Hewrtel, L. Hellner, and G. Dujardin, “Photon-stimulated desorption of H+ and H- ions from diamond surfaces: Evidence for direct and indirect processes,” Phys. Rev. B 59(4), 3203–3209 (1999). [CrossRef]
  28. A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, “Picosecond photoluminescence decay of Si-doped chemical-vapor-deposited diamond films,” Phys. Rev. B 54(23), 16448–16451 (1996). [CrossRef]
  29. H. Sternschulte, K. Thonke, R. Sauer, P. C. Münzinger, and P. Michler, “1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films,” Phys. Rev. B 50(19), 14554–14560 (1994). [CrossRef]
  30. J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon, and S. Öberg, “The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex,” Phys. Rev. Lett. 77(14), 3041–3044 (1996). [CrossRef] [PubMed]
  31. A. E. Mora, J. W. Steeds, and J. E. Butler, “Relationship between grain boundaries and broad luminescence peaks in CVD diamond films,” Diamond Related Materials 12(3-7), 310–317 (2003). [CrossRef]
  32. L. Bergman, M. T. McClure, J. T. Glass, and R. J. Nemanich, “The origin of the broadband luminescence and the effect of nitrogen doping on the optical properties of diamond films,” J. Appl. Phys. 76(5), 3020–3027 (1994). [CrossRef]
  33. K. Iakoubovskii and G. J. Adriaensens, “Characterization of the broad green band luminescence in CVD and synthetic Ib diamond,” Diamond Related Materials 9(3-6), 1017–1020 (2000). [CrossRef]
  34. J. Ruan, K. Kobashi, and W. J. Choyke, “On the band-A emission and boron related luminescence in diamond,” Appl. Phys. Lett. 60(25), 3138–3140 (1992). [CrossRef]
  35. K. Iakoubovskii and G. J. Adriaensens, “Luminescence excitation spectra in diamond,” Phys. Rev. B 61(15), 10174–10182 (2000). [CrossRef]
  36. X. Zhou, T. K. Sham, Y. Wu, Y. M. Chong, I. Bello, S. T. Lee, F. Heigl, T. Regier, and R. I. R. Blyth, “X-ray excited optical luminescence from diamond thin films: the contribution of sp2- and H-bonded carbon to the luminescence,” J. Am. Chem. Soc. 129(6), 1476–1477 (2007). [CrossRef] [PubMed]
  37. R. W. Boyd, Nonlinear Optics, (Academic Press, 2002).
  38. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991). [CrossRef] [PubMed]
  39. M. Jacobsohn and U. Banin, “Size Dependence of Second Harmonic Generation in CdSe Nanocrystal Quantum Dots,” J. Phys. Chem. B 104(1), 1–5 (2000). [CrossRef]
  40. M. J. Weber, Handbook of Optical Materials, (CRC Press, 2002).
  41. A. Faccinetto, S. Mazzucato, D. Pedron, R. Bozio, S. Destri, and W. Porzio, “Non-resonant z-scan characterization of the third-order nonlinear optical properties of conjugated poly(thiophene azines),” ChemPhysChem 9(14), 2028–2034 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited