OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1430–1437

High-order temporal coherences of
chaotic and laser light

Martin J. Stevens, Burm Baek, Eric A. Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl K. Berggren, Richard P. Mirin, and Sae Woo Nam  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1430-1437 (2010)
http://dx.doi.org/10.1364/OE.18.001430


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.

© 2010 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.5570) Detectors : Quantum detectors
(270.1670) Quantum optics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 18, 2009
Revised Manuscript: December 23, 2009
Manuscript Accepted: December 26, 2009
Published: January 12, 2010

Citation
Martin J. Stevens, Burm Baek, Eric A. Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl K. Berggren, Richard P. Mirin, and Sae Woo Nam, "High-order temporal coherences of
chaotic and laser light," Opt. Express 18, 1430-1437 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Rigler, and E. Elson, eds., Fluorescence Correlation Spectroscopy: Theory and Applications (Springer-Verlag, Berlin, 2001).
  2. R. Pecora, ed., Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, New York, 1985).
  3. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon Antibunching in Resonance Fluorescence,” Phys. Rev. Lett. 39(11), 691–695 (1977). [CrossRef]
  4. R. Loudon, The Quantum Theory of Light, Third Edition (Oxford University Press, Oxford, 2000).
  5. H. Qian and E. L. Elson, “Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states,” Proc. Natl. Acad. Sci. U.S.A. 101(9), 2828–2833 (2004). [CrossRef] [PubMed]
  6. P.-A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999). [CrossRef]
  7. E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A. Cornell, and C. E. Wieman, “Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay,” Phys. Rev. Lett. 79(3), 337–340 (1997). [CrossRef]
  8. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, “Condensation of semiconductor microcavity exciton polaritons,” Science 298(5591), 199–202 (2002). [CrossRef] [PubMed]
  9. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460(7252), 245–249 (2009). [CrossRef] [PubMed]
  10. M. Assmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325(5938), 297–300 (2009). [CrossRef] [PubMed]
  11. A. G. Palmer and N. L. Thompson, “Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy,” Biophys. J. 52(2), 257–270 (1987). [CrossRef] [PubMed]
  12. R. Hanbury Brown and R. Q. Twiss, “Correlations between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956). [CrossRef]
  13. R. F. Chang, V. Korenman, C. O. Alley, and R. W. Detenbeck, “Correlations in Light from a Laser at Threshold,” Phys. Rev. 178(2), 612–621 (1969). [CrossRef]
  14. M. Corti and V. Degiorgio, “Intrinsic third-order correlations in laser light near threshold,” Phys. Rev. A 14(4), 1475–1478 (1976). [CrossRef]
  15. Y. Qu, S. Singh, and C. D. Cantrell, “Measurements of higher order photon bunching of light beams,” Phys. Rev. Lett. 76(8), 1236–1239 (1996). [CrossRef] [PubMed]
  16. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705 (2001). [CrossRef]
  17. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14(2), 527–534 (2006). [CrossRef] [PubMed]
  18. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009). [CrossRef]
  19. F. Davidson, “Measurements of Photon Correlations in a Laser Beam near Threshold with Time-to-Amplitude Converter Techniques,” Phys. Rev. 185(2), 446–453 (1969). [CrossRef]
  20. A. Verevkin, A. Pearlman, W. Słysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447 (2004).
  21. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance- limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006). [CrossRef]
  22. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13(26), 10846–10853 (2005). [CrossRef] [PubMed]
  23. E. A. Dauler, M. J. Stevens, B. Baek, R. J. Molnar, S. A. Hamilton, R. P. Mirin, S. W. Nam, and K. K. Berggren, “Measuring intensity correlations with a two-element superconducting nanowire single-photon detector,” Phys. Rev. A 78(5), 053826 (2008). [CrossRef]
  24. R. J. Glauber, “Optical Coherence and Photon Statistics,” in Quantum Optics and Electronics (Les Houches 1964), C. deWitt, A. Blandin and C. Cohen-Tannoudji, eds. (Gordon and Breach, New York, 1965). pp. 63–185.
  25. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009). [CrossRef]
  26. A. Ofir and E. N. Ribak, “Offline, multidetector intensity interferometers – I. Theory,” Mon. Not. R. Astron. Soc. 368(4), 1646–1651 (2006). [CrossRef]
  27. I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and L.-A. Wu, “High-visibility intensity interference and ghost imaging with pseudo-thermal light,” J. Mod. Opt. 56(2), 422–431 (2009). [CrossRef]
  28. J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79(2), 023819 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2364 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited