OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1444–1449

28W average power hydrocarbon-free rubidium diode pumped alkali laser

Jason Zweiback and William F Krupke  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1444-1449 (2010)
http://dx.doi.org/10.1364/OE.18.001444


View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental results for a high-power diode pumped hydrocarbon-free rubidium laser with a scalable architecture. The laser consists of a liquid cooled, copper waveguide which serves to both guide the pump light and to provide a thermally conductive surface near the gain volume to remove heat. A laser diode stack, with a linewidth narrowed to ~0.35 nm with volume bragg gratings, is used to pump the cell. We have achieved 24W average power output using 4 atmospheres of naturally occurring helium (4He) as the buffer gas and 28W using 2.8 atmospheres of 3He.

© 2010 OSA

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 5, 2009
Revised Manuscript: December 17, 2009
Manuscript Accepted: December 21, 2009
Published: January 12, 2010

Citation
Jason Zweiback and William F Krupke, "28W average power hydrocarbon-free rubidium diode pumped alkali laser," Opt. Express 18, 1444-1449 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, Diode pumped alkali laser, US Patent No. 6,643,311 B2.
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003). [CrossRef] [PubMed]
  3. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, A. Dubinskii, and L. O. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004). [CrossRef]
  4. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31(3), 353–355 (2006). [CrossRef] [PubMed]
  5. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006). [CrossRef]
  6. B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007). [CrossRef] [PubMed]
  7. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett. 44(9), 582 (2008). [CrossRef]
  8. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 156 (2004). [CrossRef]
  9. E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2. CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970). [CrossRef]
  10. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave rubidium vapor laser,” Opt. Express 16(2), 748 (2008). [CrossRef] [PubMed]
  11. B. V. Zhadanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024 (2007). [CrossRef]
  12. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocarbon-free resonance transition 795-nm rubidium laser,” Opt. Lett. 32(16), 2423–2425 (2007). [CrossRef] [PubMed]
  13. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Resonance transition 795-nm rubidium laser using 3He buffer gas,” Opt. Commun. 281(5), 1222–1225 (2008). [CrossRef]
  14. B. V. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007). [CrossRef]
  15. J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009). [CrossRef]
  16. A. Gallagher, “Rubidium and Cesium Excitation Transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172(1), 88–96 (1968). [CrossRef]
  17. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett. 25(11), 805–807 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited