OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1469–1478

Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow

Juejun Hu, Ning-Ning Feng, Nathan Carlie, Laeticia Petit, Anu Agarwal, Kathleen Richardson, and Lionel Kimerling  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1469-1478 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thermal reflow technique is applied to high-index-contrast, sub-micron waveguides in As2S3 chalcogenide glass to reduce the sidewall roughness and associated optical scattering loss. We show that the reflow process effectively decreases sidewall roughness of chalcogenide glass waveguides. A kinetic model is presented to quantitatively explain the sidewall roughness evolution during thermal reflow. Further, we develop a technique to calculate waveguide optical loss using the roughness evolution model, and predict the ultimate low loss limit in reflowed high-index-contrast glass waveguides. Up to 50% optical loss reduction after reflow treatment is experimentally observed, and the practical loss limiting factors are discussed.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(160.2750) Materials : Glass and other amorphous materials
(230.7390) Optical devices : Waveguides, planar
(240.5770) Optics at surfaces : Roughness
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Integrated Optics

Original Manuscript: October 20, 2009
Revised Manuscript: December 23, 2009
Manuscript Accepted: December 28, 2009
Published: January 12, 2010

Juejun Hu, Ning-Ning Feng, Nathan Carlie, Laeticia Petit, Anu Agarwal, Kathleen Richardson, and Lionel Kimerling, "Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow," Opt. Express 18, 1469-1478 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Greer and N. Mathur, “Materials science: changing face of the chameleon,” Nature 437(7063), 1246–1247 (2005). [CrossRef] [PubMed]
  2. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  3. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  4. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  5. M. Pelusi, V. Ta'eed, M. Lamont, S. Madden, D. Choi, B. Luther-Davies, and B. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007). [CrossRef]
  6. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  7. P. Tien, “Light Waves in Thin Films and Integrated Optics,” Appl. Opt. 10(11), 2395–2413 (1971). [CrossRef] [PubMed]
  8. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  9. S. Dutta, H. Jackson, and J. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett. 37(6), 512–514 (1980). [CrossRef]
  10. R. Syms and A. Holmes, “Reflow and Burial of Channel Waveguides Formed in Sol-Gel Glass on Si Substrates,” IEEE Photon. Technol. Lett. 5(9), 1077–1079 (1993). [CrossRef]
  11. S. Ramachandran and S. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74(1), 13–15 (1999). [CrossRef]
  12. S. Ramachandran and S. Bishop, “Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses,” IEEE J. Sel. Top. Quantum Electron. 11(1), 260–270 (2005). [CrossRef]
  13. D. Marcuse, “Radiation Losses of Dielectric Waveguides in Terms of the Power Spectrum of the Wall Distortion Function,” Bell Syst. Tech. J. 48, 3233 (1969).
  14. S. Surińach, E. Illekova, G. Zhang, M. Poulain, and M. Barό, “Optical fiber drawing temperature of fluorogallate glasses,” J. Mater. Res. 11(10), 2633–2640 (1996). [CrossRef]
  15. http://www.amorphousmaterials.com/IR%20Fibers.htm
  16. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef] [PubMed]
  17. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. J. 137, 282–288 (1990).
  18. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005). [CrossRef]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  20. Patterned As2S3 films are highly susceptible to surface oxidation and thus need to be protected by polymer coatings (e.g. SU8) for long-term stability. Our XPS study has confirmed the presence of surface As2Ox oxides on as-patterned As2S3 waveguides exposed in ambient air for just a few hours.
  21. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]
  22. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20(11), 1976–1980 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited